Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2013

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Applying Mathematica to practical problems

  • To: mathgroup at smc.vnet.net
  • Subject: [mg131020] Re: Applying Mathematica to practical problems
  • From: Andrzej Kozlowski <akozlowski at gmail.com>
  • Date: Tue, 4 Jun 2013 01:59:23 -0400 (EDT)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-outx@smc.vnet.net
  • Delivered-to: mathgroup-newsendx@smc.vnet.net
  • References: <kmngb2$3rv$1@smc.vnet.net> <20130519095011.606CD6A14@smc.vnet.net> <20130530101525.2281869F1@smc.vnet.net> <ko9ipa$kde$1@smc.vnet.net> <51A93AC9.5040106@cs.berkeley.edu> <koehcf$2s8$1@smc.vnet.net> <20130603073442.AC7CE69D7@smc.vnet.net> <E5F943A8-A369-42FA-8697-01A69A7565EA@mimuw.edu.pl> <51ACAFAE.4050901@eecs.berkeley.edu> <51ACB2C5.9080206@eecs.berkeley.edu>

On 3 Jun 2013, at 17:14, Richard Fateman <fateman at EECS.Berkeley.EDU> wrote:

> On 6/3/2013 8:01 AM, Richard Fateman wrote:
> I said..
> Solve[x+1==x,x] returns {}
> yet
> 1`0 +1`0 == 1`0 returns True.
>
> oops.  make that last line 1`0+1 == 1`0 .
>
> Changing the semantics of ==  to the semantics of === may help
> in some circumstances, but it seems to me we went through this
> before.
> RJF

I forgot to deal with this little thing. Solve solves over the (exact) complex numbers. 1`0  is not an exact real number hence it is not an exact complex number. Non-exact reals and complexes are not included so your "proof" is just a bluff.

Andrzej Kozlowski

PS. I realize that Mathematica gives:

Element[1`0, Reals]

True

I have never liked this and I think it ought to be changed (unless something important depends on this).



  • Prev by Date: Re: Warsaw Univ. course, was Re: Work on Basic
  • Next by Date: Re: diffusion PDE
  • Previous by thread: Re: Applying Mathematica to practical problems
  • Next by thread: Re: Applying Mathematica to practical problems