Re: How to find the roots of non linear equations
- To: mathgroup at smc.vnet.net
- Subject: [mg120029] Re: How to find the roots of non linear equations
- From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
- Date: Tue, 5 Mar 2013 22:13:41 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
f1=a*Sin[x]/l0 + b*Sin[x]/l1 f2= y*Cos[x]/l0+ y*Cos[x]/l1 - (1/e^y) Solve[f1==0,f2==0,{x,y}] f1 = a*Sin[x]/l0 + b*Sin[x]/l1; f2 = y*Cos[x]/l0 + y*Cos[x]/l1 - (1/e^y); Solve[{f1 == 0, f2 == 0}, {x, y}] {{x -> -ArcCos[-(l0/Sqrt[(l0 + l1)^2]) - l1/Sqrt[(l0 + l1)^2]], y -> ProductLog[-((l0 l1 Log[e])/Sqrt[l0^2 + 2 l0 l1 + l1^2])]/ Log[e]}, {x -> ArcCos[-(l0/Sqrt[(l0 + l1)^2]) - l1/Sqrt[(l0 + l1)^2]], y -> ProductLog[-((l0 l1 Log[e])/Sqrt[l0^2 + 2 l0 l1 + l1^2])]/ Log[e]}, {x -> -ArcCos[ l0/Sqrt[(l0 + l1)^2] + l1/Sqrt[(l0 + l1)^2]], y -> ProductLog[(l0 l1 Log[e])/Sqrt[l0^2 + 2 l0 l1 + l1^2]]/ Log[e]}, {x -> ArcCos[l0/Sqrt[(l0 + l1)^2] + l1/Sqrt[(l0 + l1)^2]], y -> ProductLog[(l0 l1 Log[e])/Sqrt[l0^2 + 2 l0 l1 + l1^2]]/ Log[e]}} Alexei BOULBITCH, Dr., habil. IEE S.A. ZAE Weiergewan, 11, rue Edmond Reuter, L-5326 Contern, LUXEMBOURG Office phone : +352-2454-2566 Office fax: +352-2454-3566 mobile phone: +49 151 52 40 66 44 e-mail: alexei.boulbitch at iee.lu