Re: Integrate with unknow function
- To: mathgroup at smc.vnet.net
- Subject: [mg130228] Re: Integrate with unknow function
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Sun, 24 Mar 2013 04:16:25 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130323072511.390976A2E@smc.vnet.net>
If g is the indefinite integral of a contrinuous function f[x] then Using a replacement rule ClearAll[f, g, expr]; expr = Integrate[f[d], {d, 0, 3}] - Integrate[f[d], {d, 0, 2}]; expr /. Integrate[f[x_], {x_, a_, b_}] -> g[b] - g[a] -g[2] + g[3] Alternatively, defining an upvalue for f (TagSet) ClearAll[f, g, expr]; expr = Integrate[f[d], {d, 0, 3}] - Integrate[f[d], {d, 0, 2}]; f /: Integrate[f[x_], {x_, a_, b_}] = g[b] - g[a]; expr -g[2] + g[3] Bob Hanlon On Sat, Mar 23, 2013 at 3:25 AM, Shan <shan.pub at gmail.com> wrote: > Hi, > > I have a very rookie question as follows: > > Integrate[f[d], {d, 0,3}] - Integrate[f[d], {d, 0,2}] > > How can I get the result as f[d]? Thanks very much for any help! > > shan >
- References:
- Integrate with unknow function
- From: Shan <shan.pub@gmail.com>
- Integrate with unknow function