Re: Integrate with unknow function
- To: mathgroup at smc.vnet.net
- Subject: [mg130231] Re: Integrate with unknow function
- From: "shan@mitbbs" <shan.pub at gmail.com>
- Date: Sun, 24 Mar 2013 04:17:25 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130323072511.390976A2E@smc.vnet.net>
Hi Bob, Thank you so much for your advice! It works great! But I actually can't define g as the indefinite integral of function f[x]. Can mathematica handle something like the following problem? Two functions f1 and f2, i.e., f1=Integrate[f11[x],{x,0,a1}]+ Integrate[f12[x],{x,a1,k}] f2=Integrate[f21[x],{x,0,a2}]+Integrate[f22[x],{x,a2,k}] where f11,f12,f21,f22 have no exact forms, and 0<a1<a2<k. Solve f1-f2 and get result as [image: [;\int_0^{a1}(f11[x]-f21[x])dx+\int_{a1}^{a2}(f12[x]-f21[x])dx+\int_{a2}^{k}(f12[x]-f22[d])dx;]] Thanks a lot! Shan On Sat, Mar 23, 2013 at 8:04 AM, Bob Hanlon <hanlonr357 at gmail.com> wrote: > If g is the indefinite integral of a contrinuous function f[x] then > > Using a replacement rule > > ClearAll[f, g, expr]; > > expr = Integrate[f[d], {d, 0, 3}] - > Integrate[f[d], {d, 0, 2}]; > > expr /. Integrate[f[x_], {x_, a_, b_}] -> > g[b] - g[a] > > -g[2] + g[3] > > Alternatively, defining an upvalue for f (TagSet) > > ClearAll[f, g, expr]; > > expr = Integrate[f[d], {d, 0, 3}] - > Integrate[f[d], {d, 0, 2}]; > > f /: Integrate[f[x_], {x_, a_, b_}] = > g[b] - g[a]; > > expr > > -g[2] + g[3] > > > Bob Hanlon > > > On Sat, Mar 23, 2013 at 3:25 AM, Shan <shan.pub at gmail.com> wrote: > > Hi, > > > > I have a very rookie question as follows: > > > > Integrate[f[d], {d, 0,3}] - Integrate[f[d], {d, 0,2}] > > > > How can I get the result as f[d]? Thanks very much for any help! > > > > shan > > >
- References:
- Integrate with unknow function
- From: Shan <shan.pub@gmail.com>
- Integrate with unknow function