Re: Newton-Raphson Root Finding, Difficulty in coding
- To: mathgroup at smc.vnet.net
- Subject: [mg131817] Re: Newton-Raphson Root Finding, Difficulty in coding
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Wed, 9 Oct 2013 22:11:07 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <20131009061159.57E046A24@smc.vnet.net>
a = 1.36 // Rationalize[#, 0] &; b = .003183 // Rationalize[#, 0] &; R = .0820578 // Rationalize[#, 0] &; T = 333; inc = (592 - 39)/600; v[atm_] := vi - ((((atm) + (a/vi^2)) (vi - b) - (R*T))/((atm) - (a/vi^2) + (2 a* b/vi^3))); Using Solve data = {#, vi /. Solve[v[#] == 0, vi][[-1]]} & /@ Range[39/10, 592/10, inc]; ListLinePlot[data, PlotRange -> All, Frame -> True, Axes -> False, FrameLabel -> (Style[#, 16] & /@ {"atm", "vi"})] Using FindRoot with a better initial estimate data = {#, vi /. FindRoot[v[#] == 0, {vi, .1}]} & /@ Range[39/10, 592/10, inc]; ListLinePlot[data, PlotRange -> All, Frame -> True, Axes -> False, FrameLabel -> (Style[#, 16] & /@ {"atm", "vi"})] Bob Hanlon On Wed, Oct 9, 2013 at 2:11 AM, Cory <leahyc1 at apps.tcnj.edu> wrote: > Hello > > I need to use the Newton Raphson Method to find values of Specific Volume > from the Van der Waal equation over a process of constant Temperature but > variant Pressure. > > I've worked Mathematica to be able to spit out a list of however many > iterations I want between the desired Pressure min and max (3.9 atm to 59.2 > atm). Further, I am able to find the root of a single specified element in > the list. However, I am unable to figure out how to get the roots > (Specific volumes) for all elements at once. > > For example: > > ---------------------------------------------------------- > > FindRoot[v[[59]] == 0, {vi, 4}, WorkingPrecision -> 20] > > ---------------------------------------------------------- > > will show vi, specific volume, for the 59th element in the list. > > I've tried the following, thinking this would work for multiple elements: > > ---------------------------------------------------------- > > FindRoot[v[[1;;60]] == 0, {vi, 4}, WorkingPrecision -> 20] > > ---------------------------------------------------------- > > However I receive an error. > > "FindRoot::nveq: "The number of equations does not match the number of > variables in FindRoot[v[[1;;60]]==0,{vi,4},WorkingPrecision->20]."" > > This is my code: > > ---------------------------------------------------------- > > a = 1.36; > b = .003183; > R = .0820578; > T = 333; > inc = (59.2 - 3.9)/60; > > v = Table[ > vi - ((((atm) + (a/vi^2)) (vi - b) - (R*T))/((atm) - (a/ > vi^2) + (2 a*b/vi^3))), {atm, 3.9, 59.2, inc}] > > FindRoot[v[[59]] == 0, {vi, 4}, WorkingPrecision -> 20] > > --------------------------------------------------------- > > Any help would be greatly appreciated! Thanks > >
- References:
- Newton-Raphson Root Finding, Difficulty in coding
- From: Cory <leahyc1@apps.tcnj.edu>
- Newton-Raphson Root Finding, Difficulty in coding