Re: Integrating special functions
- To: mathgroup at smc.vnet.net
- Subject: [mg131599] Re: Integrating special functions
- From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
- Date: Tue, 10 Sep 2013 03:34:48 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
Dear All, I would like to integrate the following function with Legendre polynomial and Gamma function. I am open to any suggestions. ass = {s > 0, \[Alpha] > 0}; \[Phi][s_, x_, \[Alpha]_] := (-1)^s Sqrt[(s \[Alpha])/ Gamma[1 + 2*s]] LegendreP[s, s, Tanh[\[Alpha] x]] \[Phi]1[s_, x_, \[Alpha]_] := D[[\[Phi][s, x, \[Alpha]], x]] a3 = Table[ Integrate[-\[ImaginaryI] x \[Phi][s, x, a] \[Phi]1[s, x, a], {x, -\[Infinity], \[Infinity]}, Assumptions -> \[Alpha] > 0, s > 0] would it be possible to get a closed form of the integration a3? Hi, Herman, Since f(x)*f'(x)=g'(x) where g(x)=0.5*[f(x)]^2, your integral is easily transformed by parts into form: Integrate[x*g'[x],x]===x*g(x)-Integrate[g[x],x] You may add any limits to the above integral. The last term above is: int=Integrate[LegendreP[s, s,Tanh[x]]^2, {x, -\[Infinity], \[Infinity]}] It is approximately int=Exp[-1.025+1.303*s^3/2] as I have shown here: http://mathematica.stackexchange.com/questions/31534/integrating-special-functions/31776?noredirect=1#comment99086_31776 Have fun, Alexei Alexei BOULBITCH, Dr., habil. IEE S.A. ZAE Weiergewan, 11, rue Edmond Reuter, L-5326 Contern, LUXEMBOURG Office phone : +352-2454-2566 Office fax: +352-2454-3566 mobile phone: +49 151 52 40 66 44 e-mail: alexei.boulbitch at iee.lu