FindRoot
- To: mathgroup at smc.vnet.net
- Subject: [mg131634] FindRoot
- From: bruce.colletti at gmail.com
- Date: Sat, 14 Sep 2013 06:03:59 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
Re 9.0.1 under Windows 7. The code below is extracted from another source. Part I below returns 289 even though n is never given a value. Why does the module return a value and in particular, what does 289 mean? Part II doesn't return a value (as expected). I don't see why Part I returns a value but not Part II. Thanks. Bruce In[1]:= (* Part I *) f[n_,p1_,p2_]:=Sqrt[2n](ArcSin@Sqrt[p1-1/(2n)]-ArcSin@Sqrt[p2+1/(2n)]); myModule1[\[Alpha]_,\[Beta]_]:=Module[{A=ConstantArray["",{9,9}],n,powerEST,p1=0.2,p2=0.1}, If[ p1>p2, powerEST=SurvivalFunction[NormalDistribution[f[n,0.2,0.1],1],Quantile[NormalDistribution[],1-\[Alpha]]]; A[[IntegerPart[10(p1-0.1)],IntegerPart[10p2]]]=Ceiling[n/.FindRoot[powerEST-(1-\[Beta]),{n,40}]] ] ]; myModule1[0.05,0.05] Out[3]= 289 In[4]:= (* Part II *) myModule2[\[Alpha]_,\[Beta]_]:=Module[{A=ConstantArray["",{9,9}],n}, SurvivalFunction[NormalDistribution[f[n,0.2,0.1],1],Quantile[NormalDistribution[],1-\[Alpha]]] ]; myModule2[0.05,0.05] Out[5]= 1/2 Erfc[(1.64485 -Sqrt[2] Sqrt[n$272] (ArcSin[Sqrt[0.2 -1/(2 n$272)]]-ArcSin[Sqrt[0.1 +1/(2 n$272)]]))/Sqrt[2]]
- Follow-Ups:
- Re: FindRoot
- From: Bob Hanlon <hanlonr357@gmail.com>
- Re: FindRoot