Re:complex conjugation by star

*To*: mathgroup at smc.vnet.net*Subject*: [mg132609] Re:complex conjugation by star*From*: "Dave Snead" <dsnead6 at charter.net>*Date*: Sun, 20 Apr 2014 04:46:55 -0400 (EDT)*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com*Delivered-to*: l-mathgroup@wolfram.com*Delivered-to*: mathgroup-outx@smc.vnet.net*Delivered-to*: mathgroup-newsendx@smc.vnet.net*References*: <20140418054638.0964A6A15@smc.vnet.net> <0CA7E131846E455799C2D385BDCCFB98@DV73080US> <F6CF125F5777F04CB8B97E5FFA0BD1B6101C676B@GIUDECCA.ricerca.lan>

Rob -- This will do it. x,y are real, any others are complex. RealQ[f_]:=MemberQ[{x,y},f} SuperStar[f_?RealQ]:=f SuperStar[f_?NumberQ]:=Conjugate[f] SuperStar[f:_[___]]:=SuperStar/@f Cheers, Dave Snead -----Original Message----- From: Brambilla Roberto Luigi (RSE) Sent: Friday, April 18, 2014 2:10 AM To: 'Dave Snead' ; mathgroup at smc.vnet.net Subject: [mg132609] R: complex conjugation by star Dear Dave, many thanks again. Now I have the problem to tell Mathematica that same variables are reals and have not to be 'starred' so that (x+Iy+z)* is not x*+Iy*+z* but x-Iy+z* (if x and y are reals and z unknown). Command like Element[x, Reals] does not work. Sincerely yours Roberto -----Messaggio originale----- Da: Dave Snead [mailto:dsnead6 at charter.net] Inviato: venerdì 18 aprile 2014 09:30 A: Brambilla Roberto Luigi (RSE); mathgroup at smc.vnet.net Oggetto: Re: complex conjugation by star Rob -- This will give you what you want: SuperStar[f_?NumberQ]:=Conjugate[f] SuperStar[f:_[___]]:=SuperStar/@f Cheers, Dave Snead -----Original Message----- From: Brambilla Roberto Luigi (RSE) Sent: Thursday, April 17, 2014 10:46 PM To: mathgroup at smc.vnet.net Subject: [mg132609] complex conjugation by star I have defined the following useful star complex-conjugation (common star exponent notation) f_*:=f/.Complex[u_,v_]->Complex[u,-v] and it works fine. For example BesselJ[2,x+I y]* gives BesselJ[2,x-I y] etc...(x,y defined/undefined). Also it is listable on number lists {1+i2, 5+i6}* gives {1-i2, 5-i6} . Unfortunately it does not work on symbols, i.e. A* gives A even if I have defined A as a complex number by means of Element[A, Complexes]. Similarly if I define Element[{A,B,G}, Complexes] {A,B,G}* gives {A,B,G} and (A+B+G)* gives A+B+G. I'd like to obtain {A*,B*,G*} and A*+B*+G* ( ! ) Is it possible to fix this deficiency, unpleasant in manipulating general expressions where is not known if symbols represent real or complex variables ? Many thanks! Rob RSE SpA ha adottato il Modello Organizzativo ai sensi del D.Lgs.231/2001, inforza del quale l'assunzione di obbligazioni da parte della Societ=E0 avviene con firma di un procuratore, munito di idonei poteri. RSE adopts a Compliance Programme under the Italian Law (D.Lgs.231/2001). According to this RSE Compliance Programme, any commitment of RSE is taken by the signature of one Representative granted by a proper Power of Attorney. Le informazioni contenute in questo messaggio di posta elettronica sono riservate e confidenziali e ne e' vietata la diffusione in qualsiasi modo o forma. Qualora Lei non fosse la persona destinataria del presente messaggio, Lainvitiamo a non diffonderlo e ad eliminarlo, dandone gentilmente comunicazione al mittente. The information included in this e-mail and any attachments are confidential and may also be privileged. If you are not the correct recipient, you are kindly requested to notify the sender immediately, to cancel it and not to disclose the contents to any other person.

**References**:**complex conjugation by star***From:*"Brambilla Roberto Luigi (RSE)" <Roberto.Brambilla@rse-web.it>