Goodstein expansion
- To: mathgroup at smc.vnet.net
- Subject: [mg132315] Goodstein expansion
- From: "Brambilla Roberto Luigi (RSE)" <Roberto.Brambilla at rse-web.it>
- Date: Sat, 8 Feb 2014 04:02:30 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
The Goodstein expansion of integers (see for instance Stillwell," Roads to Infinity", pag.47) Given an integer n we can write it as sum of powers of 2 87=2^6+2^4+2^2+1=2^(2^2+2)+2^(2^2)+2^2+2^0 More generally assuming an integer b as a base, we can write n as a sum of power of b with coefficients <b es.: b=5 87=3*5^2+2*5^1+2*5^0. I can do it by means of a long and obvious routine with lots of If[] and While[]. May be someone can do it by means of the recursive properties of Mathematica language? Many thanks to all the friends of this group! Roberto RSE SpA ha adottato il Modello Organizzativo ai sensi del D.Lgs.231/2001, in= forza del quale l'assunzione di obbligazioni da parte della Societ=E0 avvie= ne con firma di un procuratore, munito di idonei poteri. RSE adopts a Compliance Programme under the Italian Law (D.Lgs.231/2001). Ac= cording to this RSE Compliance Programme, any commitment of RSE is taken by= the signature of one Representative granted by a proper Power of Attorney.= Le informazioni contenute in questo messaggio di posta elettronica sono ris= ervate e confidenziali e ne e' vietata la diffusione in qualsiasi modo o for= ma. Qualora Lei non fosse la persona destinataria del presente messaggio, La= invitiamo a non diffonderlo e ad eliminarlo, dandone gentilmente comunicazi= one al mittente. The information included in this e-mail and any attachments= are confidential and may also be privileged. If you are not the correct rec= ipient, you are kindly requested to notify the sender immediately, to cancel= it and not to disclose the contents to any other person.
- Follow-Ups:
- Re: Goodstein expansion
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: Goodstein expansion
- From: Bob Hanlon <hanlonr357@gmail.com>
- Re: Goodstein expansion