MathGroup Archive 2014

[Date Index] [Thread Index] [Author Index]

Search the Archive

Elasticity functions for Bezier and rectangular forms


(*I have the Bezier curve*)

pts = {p[0], p[1], p[2], p[3]} = {{0, .65}, {1.8, 2.6}, {4, 2.5}, {4, 5}};

n = Length[pts] - 1;

bcurve = Sum[Binomial[n, i]* (1 - t)^(n - i) *t ^i  p[i] , {i, 0, n}];

(* the plot range for the resulting Bezier curve is obviously {p[0][[1]],
p[3][[1]} ->  {0,4} *)

(*Then, I want to transform the above parametric Bezier curve into a
rectangular {x,y} curve one by solving curve[[1]] x= x(t) for t and
plugging  the result t-> x(t) into curve[[2]]  or  y = y(t).*)

sols= Solve[x == bcurve[[1]], t, Reals],


yvalues = (% /. x -> #) & /@ Range[0, 4]

(*For testing purposes, by visual inspection I discard directly the
resulting yvalues which overflow the plot range interval {0,4}  and select
only those values of y which are members of the interval.*)


(*But that done, none of these selected  {x,y} points belong to the actual
Bezier curve bcurve yet.*)

(*In other words the apparent direct procedure to convert a parametric curve
into rectangular one does not seem to work here.*)

(*Remark: I need the basic Bezier curve bcurve to be reshapable (dynamic)
and be able to calculate the elasticity  point function of each new
resulting function as the Bezier curve bcurve gets reshaped, and for some
reason I am not being able of  getting directly the elasticity point
function of bcurve = Sum[Binomial[n, i]* (1 - t)^(n - i) *t ^i  p[i] , {i,
0, n}]; no problem for any other similar (or approximate) function given in
rectangular form*) ;

Any help will be welcome.

E. Martin-Serrano

P.S. For the sake of clarity I have enclosed the text in  as in (*text*) and
symbols or experssions within text as in symbol (when necessary).


This e-mail and the documents attached are confidential and intended solely
for the addressee; it may also be privileged. If you receive this e-mail in
error, please notify the sender immediately and destroy it. As its integrity
cannot be secured on the Internet, no sender's liability can be triggered
for the message content. Although the sender endeavors to maintain a
computer virus-free network,  he/she does not warrant that this transmission
is virus-free and  will not be liable for any damages resulting from any
virus transmitted.

Este mensaje y los ficheros adjuntos pueden contener informaci=F3n
confidencial destinada solamente a la(s) persona(s) mencionadas
anteriormente y su contenido puede estar protegido por secreto profesional y
en cualquier caso el mensaje en su totalidad est=E1  amparado y protegido por
la legislaci=F3n vigente que preserva el secreto de las comunicaciones, y por
la legislaci=F3n de protecci=F3n de datos de car=E1cter personal. Si usted recibe
este correo electr=F3nico por error, gracias por informar  inmediatamente al
remitente y destruir el mensaje. Al no estar asegurada la integridad de este
mensaje sobre la red, el remitente no se hace responsable por su contenido.
Su contenido no constituye ning=FAn  compromiso para el remitente, salvo
ratificaci=F3n escrita por ambas partes.  Aunque se esfuerza al m=E1ximo por
mantener su red libre de virus, el emisor  no puede garantizar nada al
respecto y no ser=E1 responsable de cualesquiera da=F1os que puedan resultar de
una transmisi=F3n de virus.

  • Prev by Date: Re: Plot in manipulate
  • Next by Date: Re: Plot in manipulate
  • Previous by thread: Re: Plot in manipulate
  • Next by thread: Re: Elasticity functions for Bezier and rectangular forms