Student Support Forum: 'FourierTrigSeries' topicStudent Support Forum > General > "FourierTrigSeries"

 < Previous Comment Help | Reply To Comment | Reply To Topic
 Author Comment/Response Peter Pein 10/09/06 4:31pm Hi Kris, UnitStep[Sin[3x]] is not defined for Complex x. Neither are most of the following working examples. Maybe not a bug, but an inconsistency. In[1]:= << "Calculus`FourierTransform`" In[2]:= FourierTrigSeries[UnitStep[Sin[3*Re[x]]] - 1/2, x, 5] Out[2]= (2*Sin[2*Pi*x])/Pi + (2*Sin[6*Pi*x])/(3*Pi) + (2*Sin[10*Pi*x])/(5*Pi) In[3]:= FourierTrigSeries[UnitStep[Sin[3*x]] - 1/2, x, 5, Assumptions -> Im[x] == 0] Out[3]= (2*Sin[2*Pi*x])/Pi + (2*Sin[6*Pi*x])/(3*Pi) + (2*Sin[10*Pi*x])/(5*Pi) In[4]:= FourierTrigSeries[Sign[Sin[3*x]]/2, x, 5] Out[4]= (2*Sin[2*Pi*x])/Pi + (2*Sin[6*Pi*x])/(3*Pi) + (2*Sin[10*Pi*x])/(5*Pi) In[5]:= FourierTrigSeries[Boole[Sin[3*x] > 0] - 1/2, x, 5] Out[5]= (2*Sin[2*Pi*x])/Pi + (2*Sin[6*Pi*x])/(3*Pi) + (2*Sin[10*Pi*x])/(5*Pi) In[6]:= FourierTrigSeries[Piecewise[{{1/2, Sin[3*x] > 0}}, -2^(-1)], x, 5] Out[6]= (2*Sin[2*Pi*x])/Pi + (2*Sin[6*Pi*x])/(3*Pi) + (2*Sin[10*Pi*x])/(5*Pi) In[7]:= FourierTrigSeries[Mod[Ceiling[3*(x/Pi)], 2] - 1/2, x, 5] Out[7]= (2*Sin[2*Pi*x])/Pi + (2*Sin[6*Pi*x])/(3*Pi) + (2*Sin[10*Pi*x])/(5*Pi) And quite sure there are more possibilities. Peter P.S.: have a look at the option Fourierparameters too. URL: ,

 Subject (listing for 'FourierTrigSeries') Author Date Posted FourierTrigSeries Kris 10/05/06 07:57am Re: FourierTrigSeries Peter Pein 10/09/06 4:31pm
 < Previous Comment Help | Reply To Comment | Reply To Topic