Student Support Forum: 'second order nonlinear degree equations' topicStudent Support Forum > General > "second order nonlinear degree equations"

 Next Comment > Help | Reply To Topic
 Author Comment/Response Pilly 12/12/06 03:12am Hello, I was trying to solve a system of equations attached here using shooting technique.I tried to solve it but found lot of errors always.Could any correct my mistakes. The programme i wrote for the equations is system[Ω1_, Ω2_, Ω3_] = [ { UcH'[ξ] - H[ξ]H'[ξ] == 0, UcD[ξ]K'[ξ] + 2K[ξ]H'[ξ]K[ξ]H'[ξ] == 2D[ξ]D[ξ], 4UcD[ ξ]K[ξ] + UcD'[ξ]K[ξ] == -2H'[ξ]H'[ξ]D[ξ] + 2D[ξ]D[ξ], Uc == 10, F[0] == 1, K[0] == 0, D[0] == 0, K'[ξ] == Ω1 , D'[ξ] == Ω2 } ; sol[Ω1_, Ω2_, Ω3_] := NDSolve [ system[ Ω1, Ω2, Ω3 ], { F[ξ], K[ ξ], D[ξ] }, { ξ, 0, 5 } ] ; FendBC[Ω1_ ?NumericQ] := First[ (F[ξ] /. sol[Ω1, Ω2, Ω3]) /. ξ -> 5 ; bc = FindRoot[FendBC[Ω1, Ω2, Ω3]] == 1, {Ω1, 0.2.0.25}, {Ω2, 0.3, 0.35}, {Ω3, 0.5, 0.55}] Plot[Evaluate[{F[ξ], K[ξ], D[ξ]} /. sol[Ω1, Ω2, Ω3] /. bc]], {ξ, 0, 5},             AxesLabel -> {"ξ", "\!\(\* StyleBox[\"F\",\nFontColor->RGBColor[0, 0, 1]]\),\!\(\* StyleBox[\"K\",\nFontColor->RGBColor[1, 0, 0]]\),\!\(\* StyleBox[\"D\",\nFontColor->RGBColor[1, 0, 1]]\)"}, PlotStyle -> {RGBColor[0, 0, 1], RGBColor[1, 0, 0], RGBColor[1, 0, 1]}] ; Is there any other way i could solve these equations. Thankyou, Pilly Attachment: equations11.pdf, URL: ,

 Subject (listing for 'second order nonlinear degree equations') Author Date Posted second order nonlinear degree equations Pilly 12/12/06 03:12am Re: second order nonlinear degree equations Daniele Lupo 12/13/06 03:21am
 Next Comment > Help | Reply To Topic