Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'second order nonlinear degree equations' topicStudent Support Forum > General > "second order nonlinear degree equations"

Next Comment >Help | Reply To Topic
Author Comment/Response
Pilly
12/12/06 03:12am

Hello,

I was trying to solve a system of equations attached here using shooting technique.I tried to solve it but found lot of errors always.Could any correct my mistakes.

The programme i wrote for the equations is


system[Ω1_, Ω2_, Ω3_] = [ { UcH'[ξ] - H[ξ]H'[ξ] ==
0, UcD[ξ]K'[ξ] + 2K[ξ]H'[ξ]K[ξ]H'[ξ] == 2D[ξ]D[ξ], 4UcD[
ξ]K[ξ] + UcD'[ξ]K[ξ] == -2H'[ξ]H'[ξ]D[ξ] + 2D[ξ]D[ξ], Uc == 10, F[0] == 1,
K[0] == 0, D[0] == 0, K'[ξ] == Ω1 , D'[ξ] == Ω2 } ;
sol[Ω1_, Ω2_, Ω3_] := NDSolve [ system[ Ω1, Ω2, Ω3 ], { F[ξ], K[
ξ], D[ξ] }, { ξ, 0, 5 } ] ;
FendBC[Ω1_ ?NumericQ] := First[ (F[ξ] /. sol[Ω1, Ω2, Ω3]) /. ξ -> 5 ;
bc = FindRoot[FendBC[Ω1, Ω2, Ω3]] ==
1, {Ω1, 0.2.0.25}, {Ω2, 0.3, 0.35}, {Ω3, 0.5, 0.55}]
Plot[Evaluate[{F[ξ], K[ξ], D[ξ]} /. sol[Ω1, Ω2, Ω3] /. bc]], {ξ,
0, 5},
            AxesLabel -> {"ξ", "\!\(\*
StyleBox[\"F\",\nFontColor->RGBColor[0, 0, 1]]\),\!\(\*
StyleBox[\"K\",\nFontColor->RGBColor[1, 0, 0]]\),\!\(\*
StyleBox[\"D\",\nFontColor->RGBColor[1, 0, 1]]\)"}, PlotStyle -> {RGBColor[0,
0, 1], RGBColor[1, 0, 0], RGBColor[1, 0, 1]}] ;

Is there any other way i could solve these equations.

Thankyou,
Pilly

Attachment: equations11.pdf, URL: ,

Subject (listing for 'second order nonlinear degree equations')
Author Date Posted
second order nonlinear degree equations Pilly 12/12/06 03:12am
Re: second order nonlinear degree equations Daniele Lupo 12/13/06 03:21am
Next Comment >Help | Reply To Topic