Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'Factoring expression with diracdelta' topicStudent Support Forum > General > "Factoring expression with diracdelta"

< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic
Author Comment/Response
Bill Simpson
11/15/12 1:12pm

Does this help?

In[1]:= yourExpression//.v_* DiracDelta[w_] DiracDelta[x_] + y_* DiracDelta[w_] DiracDelta[x_] -> (v + y)* DiracDelta[x] DiracDelta[y]

Out[1]= -I/8*Pi*(2*(A*Conjugate[A] + I*B*Conjugate[A])*DiracDelta[-4 + wθ]*DiracDelta[I*B*Conjugate[A]]
+ 2*(-(A*Conjugate[A]) + I*B*Conjugate[A])*DiracDelta[4 + wθ]*DiracDelta[I*B*Conjugate[A]]
+ (-2*A*Conjugate[A] - 2*I*B*Conjugate[A])*DiracDelta[-4 + wθ]*DiracDelta[-2*I*B*Conjugate[A]]
+ (2*A*Conjugate[A] - 2*I*B*Conjugate[A])*DiracDelta[4 + wθ]*DiracDelta[-2*I*B*Conjugate[A]]
+ (8*I*A*Conjugate[A] + 4*I*B*Conjugate[A])*DiracDelta[wθ]*DiracDelta[4*I*B*Conjugate[A]]
+ (2*I*B*Conjugate[A] - 2*I*A*Conjugate[B])*DiracDelta[-2 + wθ]*DiracDelta[-2*I*A*Conjugate[B]]
+ (2*I*B*Conjugate[A] - 2*I*A*Conjugate[B])*DiracDelta[2 + wθ]*DiracDelta[-2*I*A*Conjugate[B]]
+ (-2*I*B*Conjugate[A] + 2*I*A*Conjugate[B])*DiracDelta[-2 + wθ]*DiracDelta[2*I*A*Conjugate[B]]
+ 2*(2*I*B*Conjugate[A] + 2*I*A*Conjugate[B])*DiracDelta[wθ]*DiracDelta[2*I*A*Conjugate[B]]
+ (-2*I*B*Conjugate[A] + 2*I*A*Conjugate[B])*DiracDelta[2 + wθ]* DiracDelta[2*I*A*Conjugate[B]]
+ (4*I*A*Conjugate[B] + 8*I*B*Conjugate[B])*DiracDelta[wθ]*DiracDelta[8*I*B*Conjugate[B]]
+ ((-2*I*A*Conjugate[B] - 2*B*Conjugate[B])/2+ 2*(I*A*Conjugate[B]
+ B*Conjugate[B]))*DiracDelta[B*Conjugate[B]]*DiracDelta[2*(I*A*Conjugate[B] + B*Conjugate[B])]
+ (2*(I*A*Conjugate[B] - B*Conjugate[B])
+ (-2*I*A*Conjugate[B] + 2*B*Conjugate[B])/2)*DiracDelta[B*Conjugate[B]]*DiracDelta[(-2*I*A*Conjugate[B] + 2*B*Conjugate[B])/2])

URL: ,

Subject (listing for 'Factoring expression with diracdelta')
Author Date Posted
Factoring expression with diracdelta Michael 11/14/12 8:17pm
Re: Factoring expression with diracdelta Bill Simpson 11/15/12 1:12pm
Re: Re: Factoring expression with diracdelta Peter Pein 11/16/12 01:42am
Re: Factoring expression with diracdelta Nasser M. Ab... 11/15/12 6:24pm
Re: Re: Factoring expression with diracdelta yehuda 11/18/12 12:33pm
< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic