Student Support Forum: 'overlay of a surface graph and a contourn graph' topicStudent Support Forum > General > "overlay of a surface graph and a contourn graph"

 Next Comment > Help | Reply To Topic
 Author Comment/Response Mauricio Marrone 09/28/98 3:03pm I am trying to graph a surface graph and the corresponding contourn graph in the same box. HOwever,I alway get the same error, saying that the Nlist contain only two numbers when three are needed. Let me give you my instructions myCP= ContourPlot[uapproxim[x, y], {x, 0, L}, {y, 0, M}, Contours -> Union[Table[i, {i, 0, 1/4, 1/44}], Table[i, {i, 1/4, 3/2, 1/8}]], PlotPoints -> 30, AspectRatio -> Automatic, PlotRange -> All, ContourLines -> True, ContourShading -> True, ContourStyle -> (Map[{Hue[#, 1, Random[]], Thickness[.006]}&, Range[0, 1, 1/12]]), ColorFunction -> Hue, Ticks -> {Range[0, 1], Range[0, 2], {-1.5, 1.5}}, DisplayFunction -> Identity] myContourGP= First@Graphics@myCP; myContourGP= N@myContourGP/.{x_AtomQ, y_AtomQ} -> {x, y, -20}; Show[{SurfaceGraphics@myCP,Graphics3D@myContourGP}, Axes -> True, BoxRatios -> {1, 1, 1}, DisplayFunction -> \$DisplayFunction] the rest of the instructions follow: L:= 1 M:= 2 l[n_]:= n Pi/L//N m[n_]:= n Pi/M//N f1[x_]:= x^2 f2[x_]:= x+2 g1[y_]:= y g2[y_]:= y+1 A[n_]:= A[n] = 2/L NIntegrate[f1[x] Sin[l[n] x], {x, 0, L}]//Chop; B[n_]:= B[n] = 1/Sinh[l[n] M] (2/L NIntegrate[f2[x] Sin[l[n] x], {x, 0, L}] - A[n] Cosh[l[n] M])//Chop; Table[{n, A[n], B[n]}, {n, 1, 8}]//ColumnForm u1[x_, y_, n_]:= (A[n] Cosh[l[n] y] + B[n] Sinh[l[n] y]) Sin[l[n] x] u1approx[x_, y_]:= Sum[u1[x, y, n], {n, 8}] threeDplot1 = Plot3D[u1approx[x, y], {x, 0, L}, {y, 0, M}, DisplayFunction-> Identity]; Show[threeDplot1, DisplayFunction->\$DisplayFunction] \[SkeletonIndicator]SurfaceGraphics\[SkeletonIndicator] cvals1:= Table[i, {i, 0, 1/4, 1/44}] cvals2:= Table[i, {i, 1/4, 3/2, 5/44}] contourvals:= Union[cvals1, cvals2] u1[x_, y_, n_]:= (A[n] Cosh[l[n] y] + B[n] Sinh[l[n] y]) Sin[l[n] x] u1approx[x_, y_]:= Sum[u1[x, y, n], {n, 8}] contourgraphs1 = ContourPlot[u1approx[x, y], {x, 0, 1}, {y, 0, 2}, PlotPoints -> 40, Contours -> contourvals, ContourShading -> False, DisplayFunction -> Identity]; Show[GraphicsArray[{threeDplot1, contourgraphs1}], DisplayFunction -> \$DisplayFunction] \[SkeletonIndicator]GraphicsArray\[SkeletonIndicator] a[n_]:= a[n] = 2/M NIntegrate[g1[y] Sin[m[n] y], {y, 0, M}]//Chop b[n_]:= b[n] = 1/Sinh[m[n] L] (2/M NIntegrate[g2[y] Sin[m[n] y], {y, 0, M}] - a[n] Cosh[m[n] L])//Chop u2[x_, y_, n_]:= (a[n] Cosh[m[n] x] + b[n] Sinh[m[n] x])* Sin[m[n] y] u2approx[x_, y_]:= Sum[u2[x, y, n], {n, 1, 8}] threeDplot2 = Plot3D[u2approx[x, y], {x, 0, L}, {y, 0, M}, DisplayFunction -> Identity]; threeDplot1 = Plot3D[u1approx[x, y], {x, 0, L}, {y, 0, M}, DisplayFunction-> Identity]; Show[threeDplot1, DisplayFunction->\$DisplayFunction] \[SkeletonIndicator]SurfaceGraphics\[SkeletonIndicator] contourgraphs2= ContourPlot[u2approx[x, y], {x, 0, 1}, {y, 0, 2}, PlotPoints -> 40, Contours -> contourvals, ContourShading -> False, DisplayFunction -> Identity]; Show[GraphicsArray[{threeDplot2, contourgraphs2}], DisplayFunction -> \$DisplayFunction] \[SkeletonIndicator]GraphicsArray\[SkeletonIndicator] uapproxim[x_, y_]:= u1approx[x, y]+ u2approx[x, y]; threeDplot= Plot3D[uapproxim[x, y], {x, 0, L}, {y, 0, M}, DisplayFunction -> Identity]; contourgraphsu= ContourPlot[uapproxim[x, y], {x, 0, 1}, {y, 0, 2}, PlotPoints -> 40, Contours -> contourvals, ContourShading -> False, DisplayFunction -> Identity]; Show[GraphicsArray[{threeDplot, contourgraphsu}], DisplayFunction -> \$DisplayFunction] \[SkeletonIndicator]GraphicsArray\[SkeletonIndicator] I need urgent help. Thanks URL: ,

 Subject (listing for 'overlay of a surface graph and a contourn graph') Author Date Posted overlay of a surface graph and a contourn graph Mauricio Mar... 09/28/98 3:03pm Re: overlay of a surface graph and a contourn g... Forum Modera... 09/29/98 3:20pm
 Next Comment > Help | Reply To Topic