Student Support Forum: 'simultaneous partial differential equation' topicStudent Support Forum > General > "simultaneous partial differential equation"

 Next Comment > Help | Reply To Topic
 Author Comment/Response Hiroki 11/29/08 02:47am Please help someone. Nice to meet you. I want to analayz "nonlinear reaction-diffusion equation". But, I couldn't fit the "Boundary and Initial condition". Please help and ,teach that source code. pde = {D[a[t, x, y], t] == Subscript[D, a] {D[a[t, x, y], x, x] + D[a[t, x, y], y, y]} + Subscript[\[Rho], a] a[t, x, y]^2/({1 + Subscript[k, a] a[t, x, y]^2} h[t, x, y]) - Subscript[\[Mu], a] a[t, x, y] + Subscript[\[Sigma], a], D[h[t, x, y], t] == Subscript[D, h] {D[h[t, x, y], x, x] + D[h[t, x, y], y, y]} + Subscript[\[Rho], h] a[t, x, y]^2 - Subscript[\[Mu], h] h[t, x, y] + Subscript[\[Sigma], h]}; bc = {(D[a[t, x, y], x] /. x -> -4) == 0, (D[a[t, x, y], x] /. x -> 4) == 0, (D[a[t, x, y], y] /. y -> -4) == 0, (D[a[t, x, y], y] /. y -> 4) == 0, (D[h[t, x, y], x] /. x -> -4) == 0, (D[h[t, x, y], x] /. x -> 4) == 0, (D[h[t, x, y], y] /. y -> -4) == 0, (D[h[t, x, y], y] /. y -> 4) == 0, a[0, x, y] == Exp[-(x^2 + y^2)], h[0, x, y] == Exp[-(x^2 + y^2)]}; sol = First[ NDSolve[{pde, bc}, {a[t, x, y], h[t, x, y]}, {t, 0, 2}, {x, -4, 4}, {y, -4, 4}]] Thanks URL: ,

 Subject (listing for 'simultaneous partial differential equation') Author Date Posted simultaneous partial differential equation Hiroki 11/29/08 02:47am Re: simultaneous partial differential equation niels 12/03/08 10:24am Re: Re: simultaneous partial differential equat... Hiroki 12/07/08 12:42pm
 Next Comment > Help | Reply To Topic