Student Support Forum: '3D Plot help.' topicStudent Support Forum > General > "3D Plot help."

 Next Comment > Help | Reply To Topic
 Author Comment/Response Ryan 09/01/10 10:33am I am not sure why I am having troubles with this. The code is below. The math is correct, but it gives me an empty plot. Any ideas where I went wrong? I attached the notebook. Thanks \[Phi][\[Beta]_][u_, v_] := 4 ArcTan[Exp[(\[Beta]/\[Rho]) u + v (1/(\[Rho]*\[Beta]))]]; xx := Exp[(\[Beta]/\[Rho])*u + v (1/(\[Rho]*\[Beta]))]; D[\[Phi][\[Beta]][u, v], u, v]; Simplify[D[\[Phi][\[Beta]][u, v], u, v]] LHS := 4 (1/ Sqrt[xx^2 + 1]) (xx/(Sqrt[xx^2 + 1])) (2 (1/Sqrt[xx^2 + 1])^2 - 1) Simplify[LHS] \[Zeta][\[Beta]_] := 2 ArcTan[\[Beta]] \[Zeta]1 := \[Zeta][1] \[Zeta]2 := \[Zeta][4] \[Chi][\[Lambda]_][u_, v_] := ( u (1 - Cos[\[Lambda]]) + v (1 + Cos[\[Lambda]]))/(\[Rho]* Sin[\[Lambda]]); \[Theta][\[Psi]_] := 2 ArcTan[Exp[\[Psi]]]; \[CapitalTheta][\[Zeta]11_, \[Zeta]12_, \[Chi]11_, \[Chi]12_] := 2 ArcTan[( Sin[(\[Zeta]11 + \[Zeta]12)/2] Sinh[(\[Chi]11 - \[Chi]12)/2])/( Sin[(\[Zeta]12 - \[Zeta]11)/2] Cosh[(\[Chi]11 + \[Chi]12)/2])]; \[Chi]One := \[Chi][\[Zeta]1][u, v]; \[Chi]Two := \[Chi][\[Zeta]2][u, v]; \[Theta]One := \[Theta][\[Chi]One]; \[Theta]Two := \[Theta][\[Chi]Two]; \[CapitalTheta]One := \[CapitalTheta][\[Zeta]1, \[Zeta]2, \[Chi]One, \ \[Chi]Two]; \[Phi]prime[\[Beta]_] := \[Phi][\[Beta]][u, v] + \[Rho]* Sin[\[Zeta]2][ Cos[\[CapitalTheta]One]/ Cos[\[Theta]One] D[\[Phi][\[Beta]][u, v], u] - Sin[\[CapitalTheta]One]/ Sin[\[Theta]One] D[\[Phi][\[Beta]][u, v], v]]; func[u, v] = \[Phi]prime[1][u, v] /. \[Rho] -> 1 Plot3D[func[u, v], {u, 0, 333}, {v, .01, 444}] Attachment: Tractrix.nb, URL: ,

 Subject (listing for '3D Plot help.') Author Date Posted 3D Plot help. Ryan 09/01/10 10:33am Re: 3D Plot help. Peter Pein 09/03/10 06:30am
 Next Comment > Help | Reply To Topic