Student Support Forum: '2-parameter surface colouring' topicStudent Support Forum > General > "2-parameter surface colouring"

 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic
 Author Comment/Response Toen 10/04/10 2:41pm In Response To 'Re: 2-parameter surface colouring'---------Hi Bill, I've solved my problem to my satisfaction. Thanks for your input along the way, it's helped. Firstly the "checker" solution that I don't like, but I'm putting here in case it's relevant to someone else. Second is the solution that I'll go with. Because Mathematica requires that all mesh lines of a given type have a constant appearance -i.e. can't vary by location- I've just used several different meshes each of which evaluate just one value. cheers, Toen >>>>>>>>>>>>>>>>>>>>>> p3=ContourPlot3D[Sin[2 Pi X] Cos[2 Pi Y]+Sin[2 Pi Y] Cos[2 Pi Z]+Cos[2 Pi X] Sin[2 Pi Z]==0,{X,0,1},{Y,0,1},{Z,0,1}, Mesh->48{1,1,1}, MeshFunctions->{#1&,#2&,#3&}, MeshStyle->None, MeshShading->Table[If[i==1||j==1||k==1,Automatic,None],{i,4},{j,4},{k,4}], MaxRecursion->0,Boxed->False,Axes->None,ColorFunction->(ColorData["BrightBands"][(#1)^2+(#2)^2+(#3)^2]&),ImageSize->500,BoundaryStyle->{Thick,White}]; p4=ContourPlot3D[Sin[2 Pi X] Cos[2 Pi Y]+Sin[2 Pi Y] Cos[2 Pi Z]+Cos[2 Pi X] Sin[2 Pi Z]==0,{X,0,1},{Y,0,1},{Z,0,1}, MaxRecursion->0,Boxed->False,Axes->None, Mesh->48{1,1,1}, MeshFunctions->{#1&,#2&,#3&}, MeshStyle->None, MeshShading->Table[If[i==1||j==1||k==1,None,Automatic],{i,4},{j,4},{k,4}], BoundaryStyle->{Thick,White}, ColorFunction->Function[{x,y,z},ColorData["ThermometerColors",x]],Background->Gray,ImageSize->500]; Show[p4,p3] >>>>>>>>>>>>>>>>>>>>>>>>>> this one takes a few seconds to calculate/render temptable = Table[{r}, {r, -2, 3, 0.2}]; ContourPlot3D[ Sin[2 Pi X] Cos[2 Pi Y] + Sin[2 Pi Y] Cos[2 Pi Z] + Cos[2 Pi X] Sin[2 Pi Z] == 0, {X, 0, 1}, {Y, 0, 1}, {Z, 0, 1}, MaxRecursion -> 1, Boxed -> False, Axes -> None, Mesh -> temptable, MeshFunctions -> Table[Function[{x, y, z}, Cos[2 Pi {x, y, z}.{2, 1, 1}] + Cos[2 Pi {x, y, z}.{1, 2, 1}] + Cos[2 Pi {x, y, z}.{1, 1, 2}]], {Length@temptable}], MeshStyle -> Table[Directive[Thick, Hue[t]], {t, 0, 1, 1/(Length@temptable - 1)}], BoundaryStyle -> {Thick, White}, ContourStyle -> Opacity[1], ColorFunction -> Function[{x, y, z}, ColorData["ThermometerColors", x]], Background -> Gray, ImageSize -> 500] URL: ,

 Subject (listing for '2-parameter surface colouring') Author Date Posted 2-parameter surface colouring Toen 09/28/10 11:01am Re: 2-parameter surface colouring Bill 09/29/10 2:47pm Re: Re: 2-parameter surface colouring Toen 10/02/10 07:24am Re: 2-parameter surface colouring Bill 10/03/10 03:46am Re: Re: 2-parameter surface colouring Toen 10/04/10 10:19am Re: 2-parameter surface colouring Bill 10/03/10 5:42pm Re: Re: 2-parameter surface colouring Toen 10/04/10 2:41pm Re: 2-parameter surface colouring Bill 10/04/10 10:43pm Re: Re: 2-parameter surface colouring Toen 10/05/10 5:29pm Re: Re: Re: 2-parameter surface colouring Bill 10/06/10 5:54pm
 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic