Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: '2-parameter surface colouring' topicStudent Support Forum > General > Archives > "2-parameter surface colouring"

< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic
Author Comment/Response
Toen
10/04/10 2:41pm

In Response To 'Re: 2-parameter surface colouring'
---------
Hi Bill,

I've solved my problem to my satisfaction. Thanks for your input along the way, it's helped.

Firstly the "checker" solution that I don't like, but I'm putting here in case it's relevant to someone else.

Second is the solution that I'll go with. Because Mathematica requires that all mesh lines of a given type have a constant appearance -i.e. can't vary by location- I've just used several different meshes each of which evaluate just one value.

cheers,
Toen

>>>>>>>>>>>>>>>>>>>>>>
p3=ContourPlot3D[Sin[2 Pi X] Cos[2 Pi Y]+Sin[2 Pi Y] Cos[2 Pi Z]+Cos[2 Pi X] Sin[2 Pi Z]==0,{X,0,1},{Y,0,1},{Z,0,1},
Mesh->48{1,1,1},
MeshFunctions->{#1&,#2&,#3&},
MeshStyle->None,
MeshShading->Table[If[i==1||j==1||k==1,Automatic,None],{i,4},{j,4},{k,4}],
MaxRecursion->0,Boxed->False,Axes->None,ColorFunction->(ColorData["BrightBands"][(#1)^2+(#2)^2+(#3)^2]&),ImageSize->500,BoundaryStyle->{Thick,White}];

p4=ContourPlot3D[Sin[2 Pi X] Cos[2 Pi Y]+Sin[2 Pi Y] Cos[2 Pi Z]+Cos[2 Pi X] Sin[2 Pi Z]==0,{X,0,1},{Y,0,1},{Z,0,1},
MaxRecursion->0,Boxed->False,Axes->None,
Mesh->48{1,1,1},
MeshFunctions->{#1&,#2&,#3&},
MeshStyle->None,
MeshShading->Table[If[i==1||j==1||k==1,None,Automatic],{i,4},{j,4},{k,4}],
BoundaryStyle->{Thick,White},
ColorFunction->Function[{x,y,z},ColorData["ThermometerColors",x]],Background->Gray,ImageSize->500];

Show[p4,p3]


>>>>>>>>>>>>>>>>>>>>>>>>>>
this one takes a few seconds to calculate/render


temptable = Table[{r}, {r, -2, 3, 0.2}];

ContourPlot3D[
Sin[2 Pi X] Cos[2 Pi Y] + Sin[2 Pi Y] Cos[2 Pi Z] +
Cos[2 Pi X] Sin[2 Pi Z] == 0, {X, 0, 1}, {Y, 0, 1}, {Z, 0, 1},
MaxRecursion -> 1, Boxed -> False, Axes -> None,
Mesh -> temptable,
MeshFunctions ->
Table[Function[{x, y, z},
Cos[2 Pi {x, y, z}.{2, 1, 1}] + Cos[2 Pi {x, y, z}.{1, 2, 1}] +
Cos[2 Pi {x, y, z}.{1, 1, 2}]], {Length@temptable}],
MeshStyle ->
Table[Directive[Thick, Hue[t]], {t, 0, 1, 1/(Length@temptable - 1)}],
BoundaryStyle -> {Thick, White}, ContourStyle -> Opacity[1],
ColorFunction ->
Function[{x, y, z}, ColorData["ThermometerColors", x]],
Background -> Gray, ImageSize -> 500]


URL: ,

Subject (listing for '2-parameter surface colouring')
Author Date Posted
2-parameter surface colouring Toen 09/28/10 11:01am
Re: 2-parameter surface colouring Bill 09/29/10 2:47pm
Re: Re: 2-parameter surface colouring Toen 10/02/10 07:24am
Re: 2-parameter surface colouring Bill 10/03/10 03:46am
Re: Re: 2-parameter surface colouring Toen 10/04/10 10:19am
Re: 2-parameter surface colouring Bill 10/03/10 5:42pm
Re: Re: 2-parameter surface colouring Toen 10/04/10 2:41pm
Re: 2-parameter surface colouring Bill 10/04/10 10:43pm
Re: Re: 2-parameter surface colouring Toen 10/05/10 5:29pm
Re: Re: Re: 2-parameter surface colouring Bill 10/06/10 5:54pm
< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic