Student Support Forum: 'Problem with integrals.' topicStudent Support Forum > General > "Problem with integrals."

 Next Comment > Help | Reply To Topic
 Author Comment/Response JOSSE Thomas 10/15/10 09:29am Hi, I have a problem with the Integrate function. My code is the following: R = 1; H = 4; L1 = 17; t[z_] := If[z > 0, 0, If[z + R < 0, 0, ArcCos[-z/R]]]; y[u_, r_] := r Sin[u]; z[u_, r_] := -r Cos[u]; zd[x_, T_] := If[T == Pi/2, 0, If[T == 0, R - H, If[x < X1[T] || x > X2[T], 0, Tan[T] (x - H/Sin[T])]]]; A[x_] := 2*Integrate[-z[t, R] Derivative[1, 0][y][t, R], {t, 0, x}] + 2*y[x, R]*z[x, R]; Cas[T_] := If[T == 0, If[H < 0, 0, If[H > R, 5, 4]], If[H > (L1 + R/Tan[T]) Sin[T], 5, If[L1*Sin[T] < H && H < R/Cos[T], 4, If[H < 0, 0, If[H < Min[R*Cos[T], L1*Sin[T]], 1, If[H < L1*Sin[T], 2, 3]]]]]]; X1[T_] := If[Cas[T] == 2 || Cas[T] == 3, (H - R/Cos[T])/Sin[T] + R*Tan[T], If[Cas[T] == 5, L1, 0]]; X2[T_] := If[Cas[T] == 0, 0, If[Cas[T] == 3 || Cas[T] == 4 || Cas[T] == 5, L1, H/Sin[T]]]; Compil[j_, T_] := A[t[zd[j, T]]]; V1bis[T_] := Integrate[Compil[j, T], {j, X1[T], X2[T]}]; V1bis[0.35] I know that it's a little bit complicated but I don't understand why I can't have a real value of V1bis. Can anyone see my error and tell me how to do it right? Thank you PS: Sorry for my bad english. URL: ,

 Subject (listing for 'Problem with integrals.') Author Date Posted Problem with integrals. JOSSE Thomas 10/15/10 09:29am Re: Problem with integrals. Forum Modera... 10/20/10 4:43pm Re: Problem with integrals. Thomas JOSSE 11/03/10 07:50am
 Next Comment > Help | Reply To Topic