Student Support Forum: 'Trigonometric Integration' topicStudent Support Forum > General > "Trigonometric Integration"

 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic
 Author Comment/Response jf 09/09/11 09:43am You can use Chop after the fact, In[1]:= Integrate[(0.5*(Sin[s/R])^3 - Sin[s/R]*(Cos[s/R])^2)/R^2, {s, 0, s}] Out[1]= (2.77556*10^-17 - 0.5 Cos[s/R] + 1.66533*10^-16 Cos[s/R]^2 + 0.5 Cos[s/R]^3)/R In[2]:= Chop[%] Out[2]= (-0.5 Cos[s/R] + 0.5 Cos[s/R]^3)/R Or make the 0.5 an exact number, In[3]:= Integrate[((1/2)*(Sin[s/R])^3 - Sin[s/R]*(Cos[s/R])^2)/R^2, {s, 0, s}] Out[3]= -((Sin[s/R] Sin[(2 s)/R])/(4 R)) The two results are equivalent. In[4]:= FullSimplify[ % - %%, Element[{R, s}, Reals]] Out[4]= ((0. + 0. I) - (2.22045*10^-16 + 0. I) Cos[s/R] - (2.77556*10^-17 + 0. I) Cos[(3 s)/R])/R In[5]:= Chop[%] Out[5]= 0 Floating-point approximate numbers are difficult for Integrate and Solve. This is a Mathematics issue, not Mathematica. URL: ,

 Subject (listing for 'Trigonometric Integration') Author Date Posted Trigonometric Integration Malay 09/09/11 02:27am Re: Trigonometric Integration jf 09/09/11 09:43am Re: Re: Trigonometric Integration Malay 09/25/11 07:13am
 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic