Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'Simplifying a result.' topicStudent Support Forum > General > Archives > "Simplifying a result."

< Previous CommentHelp | Reply To Comment | Reply To Topic
Author Comment/Response
Peter Pein
01/29/12 10:56am

Hi,

there are some ways to achieve that:

In[1]:= ser=Series[Cos[2*ArcTan[Sqrt[(1+e)/(1-e)]*Tan[(A+e*Sin[A]+(1/2)*e^2*Sin[2*A])/2]]],{e,0,2}];

1.) apply some trigonometric conversions in proper order
serCos=TrigReduce/@TrigFactor/@TrigExpand/@ser
Out[2]= Cos[A]+(-1+Cos[2 A]) e-9/8 (Cos[A]-Cos[3 A]) e^2+O[e]^3

2.) use FullSimplify with an appopriate ComplexityFunction:
In[3]:= Factor/@FullSimplify[TrigExpand/@ser,ComplexityFunction->(Count[#,_Sin|_Tan,\[Infinity]]-Count[#,Cos[_.*A],\[Infinity]]&)]
Out[3]= Cos[A]+(-1+Cos[2 A]) e-9/8 (Cos[A]-Cos[3 A]) e^2+O[e]^3

If you want to collect by cos(n A)-Terms:
In[4]:= Collect[serCos//Normal,_Cos]
Out[4]= -e+(1-(9 e^2)/8) Cos[A]+e Cos[2 A]+9/8 e^2 Cos[3 A]

or:
In[5]:= FourierCosSeries[ser//Normal,A,3]
Out[5]= -e+(1-(9 e^2)/8) Cos[A]+e Cos[2 A]+9/8 e^2 Cos[3 A]


Peter

URL: ,

Subject (listing for 'Simplifying a result.')
Author Date Posted
Simplifying a result. Pigkappa 01/27/12 8:39pm
Re: Simplifying a result. Peter Pein 01/29/12 10:56am
< Previous CommentHelp | Reply To Comment | Reply To Topic