Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'Limit returns unevaluated input' topicStudent Support Forum > General > Archives > "Limit returns unevaluated input"

< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic
Author Comment/Response
jf
06/21/12 10:50am

In Response To 'Re: Limit returns unevaluated input'
---------
If you move the Assuming outside, so Simplify sees it, too, the result is a little nicer.

In[1]:= Assuming[{b0>b1,b1>0,m0>m1,x\[Element]Reals&&n\[Element]Integers},Simplify[Limit[(2 \[Pi])^(-(1/2)) (((b0-b1) (b0+b1) (m0-m1) (-b1^2 (m0+m1 (-1+n)+3 m0 n-4 n x)+b0^2 (m0-m1+m0 n+3 m1 n-4 n x))+2 n (b1^2 (m0-x)+b0^2 (-m1+x))^2 (HarmonicNumber[(b0^2 n)/(b0^2-b1^2)]-HarmonicNumber[(b1^2 n)/(b0^2-b1^2)]))/(4 (b0-b1)^3 (b0+b1)^3)),n->Infinity]]]

Out[1]= DirectedInfinity[(b0^2-b1^2) (m0-m1) (-b1^2 (3 m0+m1-4 x)+b0^2 (m0+3 m1-4 x))+4 (b1^2 (m0-x)+b0^2 (-m1+x))^2 Log[b0] - 4 (b1^2 (m0-x)+b0^2 (-m1+x))^2 Log[b1]]


URL: ,

Subject (listing for 'Limit returns unevaluated input')
Author Date Posted
Limit returns unevaluated input igor igel 06/20/12 06:17am
Re: Limit returns unevaluated input Bill Simpson 06/20/12 11:47am
Re: Re: Limit returns unevaluated input jf 06/21/12 10:50am
Re: Re: Re: Limit returns unevaluated input igor igel 06/21/12 1:41pm
Re: Re: Re: Re: Limit returns unevaluated input jf 06/21/12 1:56pm
Re: Re: Re: Re: Re: Limit returns unevaluated i... igor igel 06/22/12 09:13am
Re^6: Limit returns unevaluat... jf 06/23/12 6:39pm
Re: Limit returns unevaluated input igor igel 07/14/12 03:20am
< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic