Student Support Forum: 'Reducing a system of linear inequalities' topicStudent Support Forum > General > Archives > "Reducing a system of linear inequalities"

 Next Comment > Help | Reply To Topic
 Author Comment/Response jmd 07/21/12 1:53pm I have a system of linear inequalities in several variables, and know that some of them are consequences of the others. Is the following command the correct one to use? Reduce[ And[ 0 <= x[1, 1], 0 <= x[1, 2], 0 <= x[1, 3], 0 <= x[1, 4], 0 <= x[1, 4] - x[2, 1], 0 <= x[1, 4] - x[2, 2], 0 <= x[1, 4] - x[2, 3], 0 <= x[2, 1] + x[2, 2] - x[2, 4], 0 <= x[2, 1] + x[2, 3] - x[2, 4], 0 <= x[2, 2] + x[2, 3] - x[2, 4], 0 <= x[2, 1] + x[2, 2] + x[2, 3] - x[2, 4], 0 <= x[2, 2] - x[3, 1], 0 <= x[2, 3] - x[3, 1], 0 <= x[2, 2] + x[2, 3] - x[3, 1], 0 <= x[2, 1] - x[3, 2], 0 <= x[2, 3] - x[3, 2], 0 <= x[2, 1] + x[2, 3] - x[3, 2], 0 <= x[2, 4] - x[3, 1] - x[3, 2], 0 <= x[2, 3] + x[2, 4] - x[3, 1] - x[3, 2], 0 <= x[2, 1] - x[3, 3], 0 <= x[2, 2] - x[3, 3], 0 <= x[2, 1] + x[2, 2] - x[3, 3], 0 <= x[2, 4] - x[3, 1] - x[3, 3], 0 <= x[2, 2] + x[2, 4] - x[3, 1] - x[3, 3], 0 <= x[2, 4] - x[3, 2] - x[3, 3], 0 <= x[2, 1] + x[2, 4] - x[3, 2] - x[3, 3], 0 <= 2 x[2, 4] - x[3, 1] - x[3, 2] - x[3, 3], 0 <= x[3, 1] + x[3, 2] + x[3, 3] - 2 x[3, 4], 0 <= x[2, 4] - x[3, 4], 0 <= x[3, 1] - x[3, 4], 0 <= x[2, 1] + x[3, 1] - x[3, 4], 0 <= x[3, 2] - x[3, 4], 0 <= x[2, 2] + x[3, 2] - x[3, 4], 0 <= x[3, 3] - x[3, 4], 0 <= x[2, 3] + x[3, 3] - x[3, 4], 0 <= x[2, 1] - x[4, 1], 0 <= x[2, 4] - x[3, 1] - x[4, 1], 0 <= x[3, 2] + x[3, 3] - x[3, 4] - x[4, 1], 0 <= -x[4, 1], 0 <= x[2, 2] - x[4, 2], 0 <= x[2, 4] - x[3, 2] - x[4, 2], 0 <= x[3, 1] + x[3, 3] - x[3, 4] - x[4, 2], 0 <= x[3, 3] - x[4, 1] - x[4, 2], 0 <= -x[4, 2], 0 <= x[2, 3] - x[4, 3], 0 <= x[2, 4] - x[3, 3] - x[4, 3], 0 <= x[3, 1] + x[3, 2] - x[3, 4] - x[4, 3], 0 <= x[3, 2] - x[4, 1] - x[4, 3], 0 <= x[3, 1] - x[4, 2] - x[4, 3], 0 <= x[3, 4] - x[4, 1] - x[4, 2] - x[4, 3], 0 <= -x[4, 3], 0 <= -x[4, 4] ], {x[1, 1], x[1, 2], x[1, 3], x[1, 4], x[2, 1], x[2, 2], x[2, 3], x[2, 4], x[3, 1], x[3, 2], x[3, 3], x[3, 4], x[4, 1], x[4, 2], x[4, 3], x[4, 4]}, Integers ] Out of this computation I want to get a shorter list of linear inequalities. Thanks in advance to the replier. URL: ,

 Subject (listing for 'Reducing a system of linear inequalities') Author Date Posted Reducing a system of linear inequalities jmd 07/21/12 1:53pm Re: Reducing a system of linear inequalities jf 07/22/12 7:24pm Re: Re: Reducing a system of linear inequalities jf 07/22/12 7:28pm
 Next Comment > Help | Reply To Topic