Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'Solve Equations running and running..' topicStudent Support Forum > General > Archives > "Solve Equations running and running.."

< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic
Author Comment/Response
Bill Simpson
02/15/13 10:25pm

Mathematica is FANATIC about correct placement of {} and similar details.

In[1]:= Solve[{a^2+b^2==c^2, d^2+e^2==f^2, a+b==x, b+e==y},{a,b,d,e}]

Out[1]= {{d -> -(Sqrt[-c^2 + 2*f^2 + x*Sqrt[2*c^2 - x^2] + 2*x*y - 2*Sqrt[2*c^2 - x^2]*y - 2*y^2]/Sqrt[2]), a -> x/2 + Sqrt[2*c^2 - x^2]/2,
e -> (-x + Sqrt[2*c^2 - x^2] + 2*y)/2, b -> (x - Sqrt[2*c^2 - x^2])/2},
{d -> Sqrt[-c^2 + 2*f^2 + x*Sqrt[2*c^2 - x^2] + 2*x*y - 2*Sqrt[2*c^2 - x^2]*y - 2*y^2]/Sqrt[2], a -> x/2 + Sqrt[2*c^2 - x^2]/2,
e -> (-x + Sqrt[2*c^2 - x^2] + 2*y)/2, b -> (x - Sqrt[2*c^2 - x^2])/2},
{d -> -(Sqrt[-c^2 + 2*f^2 - x*Sqrt[2*c^2 - x^2] + 2*x*y + 2*Sqrt[2*c^2 - x^2]*y - 2*y^2]/Sqrt[2]), a -> (x - Sqrt[2*c^2 - x^2])/2,
e -> (-x - Sqrt[2*c^2 - x^2] + 2*y)/2, b -> (x + Sqrt[2*c^2 - x^2])/2},
{d -> Sqrt[-c^2 + 2*f^2 - x*Sqrt[2*c^2 - x^2] + 2*x*y + 2*Sqrt[2*c^2 - x^2]*y - 2*y^2]/Sqrt[2], a -> (x - Sqrt[2*c^2 - x^2])/2,
e -> (-x - Sqrt[2*c^2 - x^2] + 2*y)/2, b -> (x + Sqrt[2*c^2 - x^2])/2}}

Or

In[2]:= Reduce[{a^2+b^2==c^2, d^2+e^2==f^2, a+b==x, b+e==y},{a,b,d,e}]

Out[2]= (a == (x - Sqrt[2*c^2 - x^2])/2 || a == (x + Sqrt[2*c^2 - x^2])/2) && b == -a + x && (d == -(Sqrt[-c^2 + 2*f^2 + 2*a*x - x^2 - 4*a*y + 4*x*y - 2*y^2]/Sqrt[2]) || d == Sqrt[-c^2 + 2*f^2 + 2*a*x - x^2 - 4*a*y + 4*x*y - 2*y^2]/Sqrt[2]) &&
e == a - x + y

URL: ,

Subject (listing for 'Solve Equations running and running..')
Author Date Posted
Solve Equations running and running.. KeRo 02/15/13 11:06am
Re: Solve Equations running and running.. Bill 02/15/13 5:41pm
Re: Solve Equations running and running.. Bill Simpson 02/15/13 10:25pm
Re: Solve Equations running and running.. KeRo 02/18/13 03:20am
< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic