Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'Minimum of a two-argument function' topicStudent Support Forum > General > Archives > "Minimum of a two-argument function"

< Previous CommentHelp | Reply To Comment | Reply To Topic
Author Comment/Response
Rifi
09/27/12 07:27am

In Response To 'Re: Minimum of a two-argument function'
---------
I Don't thint that's exactly what I mean. I'll try to explain it other way.
Lets take a plot like this:
RegionPlot[
R > 0 && r > 0 && r < R && 700000 R + 159 Pi (r^4 - R^4) <= 0, {r, 1,
100}, {R, 0, 100}]

Marked area is a domain.
Now let's take an equasion:
Pi*R^2-Pi*r^2=
(R=y-axis ; r=x-axis)
I want Mathematica to find minimum outcome of the equasion above in ploted domain. To simplify it a bit we can take just poits lying on the contour of this ploted region.

URL: ,

Subject (listing for 'Minimum of a two-argument function')
Author Date Posted
Minimum of a two-argument function Rifi 09/26/12 09:58am
Re: Minimum of a two-argument function Bill Simpson 09/26/12 1:59pm
Re: Re: Minimum of a two-argument function Rifi 09/27/12 07:27am
< Previous CommentHelp | Reply To Comment | Reply To Topic