Author 
Comment/Response 
Toshiyuki Meshii

04/23/97 9:19pm
Dear Sirs, Please help me on Simplify command. I was using Math v.2.2.4, and the function I defined could be simplified in about 24 hours. Note that my machine is a Pentium Pro 200MHz machine, with 128MB RAM and with 1.0GB open hard disk space working under Win95. But the new math v.3.0 has trouble in Simplifying the function. Though I am trying MemoryConstrained[ Simplify[ McbyM[h1,h2,x], TimeConstraint > 86400 ], 50000000 ] the calculation is aborted with a message ''Out of Memory. Exited.'' Please let me know a way to do simplification, at least what ver. 2.0 could do. In addition, if it is possible, I do not want to ch ange the constraints every time I execute Simplify. So I would appreciate so much if you let me know the way to change the default value. Here is the function. sa[t_] = Sinh[t]^2  Sin[t]^2; aym[x_,z_] = 1 / (2 beta^2 DY) / sa[x+z] * ( Sinh[x+z] ( Cosh[z] Sin[x]  Sinh[z] Cos[x] )  Sin[x+z] ( Cosh[x] Sin[z]  Sinh[x] Cos[z] ) ); aqm[x_,z_] = 1 / (beta DY) / sa[x+z] * ( Sinh[x+z] Cosh[z] Cos[x] + Sin[x+z] Cosh[x] Cos[z] ); ayp[x_,z_] = 1 / (2 beta^3 DY) / sa[x+z] * ( Sinh[x+z] Cosh[z] Cos[x]  Sin[x+z] Cosh[x] Cos[z] ); aqp[x_,z_] = 1 / (2 beta^2 DY) / sa[x+z] * ( Sinh[x+z] ( Cosh[z] Sin[x] + Sinh[z] Cos[x] ) + Sin[x+z] ( Cosh[x] Sin[z] + Sinh[x] Cos[z] ) ); ayps[x_,z_] = ayp[z,x]; ayms[x_,z_] = aym[z,x]; aqps[x_,z_] = aqp[z,x]; aqms[x_,z_] = aqm[z,x]; CC[h1_,h2_,x_] = { {ayps[h1,0]+ayp[0,h2], ayms[h1,0]+aym[0,h2]}, {aqps[h1,0]+aqp[0,h2], aqms[h1,0]+aqm[0,h2]+2 dm[x]} }; CCI[h1_,h2_,x_] = Inverse[ CC[h1,h2,x] ]; BB[h1_,h2_] = { aym[h1,0]  ayms[0,h2], aqm[h1,0]  aqms[0,h2] } ; { PcbyM[h1_,h2_,x_], McbyM[h1_,h2_,x_] } = CCI[h1,h2,x].BB[h1,h2]; Simplify[McbyM[h1,h2,x]] The answer which version 2.2.4 gave was as follows. (2 Cos[h1] Cosh[h1]  Cos[h1 + 2 h2] Cosh[h1] + 2 Cos[h2] Cosh[h2]  Cos[2 h1 + h2] Cosh[h2]  Cos[h2] Cosh[2 h1 + h2]  Cos[h1] Cosh[h1 + 2 h2] + Sin[h1 + 2 h2] Sinh[h1] + Sin[2 h1 + h2] Sinh[h2]  Sin[h2] Sinh[2 h1 + h2]  Sin[h1] Sinh[h1 + 2 h2]) / (2  Cos[2 (h1 + h2)]  Cosh[2 (h1 + h2)]  2 beta DY dm[x] Sin[2 h1] + beta DY Cosh[2 h2] dm[x] Sin[2 h1]  2 beta DY dm[x] Sin[2 h2] + beta DY Cosh[2 h1] dm[x] Sin[2 h2] + beta DY dm[x] Sin[2 (h1 + h2)] + 2 beta DY dm[x] Sinh[2 h1]  beta DY Cos[2 h2] dm[x] Sinh[2 h1] + 2 beta DY dm[x] Sinh[2 h2]  beta DY Cos[2 h1] dm[x] Sinh[2 h2]  beta DY dm[x] Sinh[2 (h1 + h2)]) Thank you in advance.
URL: , 
