Student Support Forum: 'A numerical integration problem' topicStudent Support Forum > General > Archives > "A numerical integration problem"

 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic
 Author Comment/Response Bill Simpson 05/13/13 12:38pm I first try your inner integral: In[1]:= Integrate[r^2 Sin[\[Theta]] E^(-((r - R)^2/b^2))E^(-((r^2 (Cos[\[Theta]])^2)/d^2))E^(-I r q (Cos[\[Theta]] Cos[\[Psi]] + Cos[\[Phi] - \[CurlyPhi]] Sin[\[Theta]] Sin[\[Psi]])), {\[Phi], 0, 2 \[Pi]}, {\[Theta], 0, \[Pi]}, {r, 0, \[Infinity]}] Out[1]= 0 Then I substitute zero In[2]:= NIntegrate[Sin[\[Psi]] q^2 q^2/(b^2 q^4 + 1^2)*0, {\[CurlyPhi], 0, 2 \[Pi]}, {\[Psi], 0, \[Pi]}, {q, 0, \[Infinity]}] Out[2]= 0 Or I see that by just looking at the integral. URL: ,

 Subject (listing for 'A numerical integration problem') Author Date Posted A numerical integration problem Wenle Weng 05/12/13 11:05pm Re: A numerical integration problem Bill Simpson 05/13/13 12:38pm Re: Re: A numerical integration problem Wenle Weng 05/16/13 8:55pm Re: Re: Re: A numerical integration problem Bill Simpson 05/17/13 11:03am
 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic