Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'NSolve / Solve Problem with Integral' topicStudent Support Forum > General > "NSolve / Solve Problem with Integral"

< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic
Author Comment/Response
Yukterez
06/04/13 10:34pm

In Response To 'Re: Re: NSolve / Solve Problem with Integral'
---------
Ok thanks Bill Simpson now I got it.

kg = 1; m = 1; sek = 1; amp = 1;(*Dimensions*)c =
299792458 m/sek (*Light Speed*);
Gyr = 10^9*365.25*24*3600*sek (*Billion Years*);
Glyr = Gyr*c (*Billion Lightyears*);
Mpc = 3.085677581*10^22 m (*Megaparsec*);
H0 = 67110 m/Mpc/
sek; \[CapitalOmega]R = 4.165*^-5; \[CapitalOmega]M = 0.3175;
\[CapitalOmega]\[CapitalLambda] =
0.6825 - \[CapitalOmega]R; \[CapitalOmega]\[CurlyEpsilon] = 0.04; \
\[CapitalOmega]T = \[CapitalOmega]R + \[CapitalOmega]M + \
\[CapitalOmega]\[CapitalLambda]; \[CapitalOmega]K =
1 - \[CapitalOmega]T;

f[A_Real] :=
NIntegrate[
1/(a Sqrt[\[CapitalOmega]R a^-4 + \[CapitalOmega]M a^-3 + \
\[CapitalOmega]K a^-2 + \[CapitalOmega]\[CapitalLambda]]), {a, 0, A},
Method -> {"GlobalAdaptive", "MaxErrorIncreases" -> 10000,
Method -> "GaussKronrodRule"}, MaxRecursion -> 10000];

aOf[t_Real] := A /. FindRoot[f[A] - t, {A, .1}];

Plot[{aOf[t]}, {t, 0, 1}]

URL: ,

Subject (listing for 'NSolve / Solve Problem with Integral')
Author Date Posted
NSolve / Solve Problem with Integral Yukterez 06/01/13 6:57pm
Re: NSolve / Solve Problem with Integral B 06/02/13 1:28pm
Re: NSolve / Solve Problem with Integral Yukterez 06/03/13 02:44am
Re: Re: NSolve / Solve Problem with Integral Bill Simpson 06/03/13 2:51pm
Re: Re: Re: NSolve / Solve Problem with Integral Yukterez 06/04/13 8:55pm
Thanks Problem solved Yukterez 06/04/13 10:34pm
Re: NSolve / Solve Problem with Integral Yukterez 06/04/13 9:45pm
< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic