Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'Laplace in polar coordinates' topicStudent Support Forum > General > "Laplace in polar coordinates"

Next Comment >Help | Reply To Topic
Author Comment/Response
Dustin
10/08/12 11:28am

I am trying to make a contour plot of the Laplace equation in polar coordinates on the wedge from 0 < theta < Pi/2

Will this work? Every time I run it, it says running and never does anything or gives an error. Just a constant running.

Nmax = 50;
\[Lambda] = Table[2 n - 1, {n, 1, Nmax}];
r[x_, y_] = Sqrt[x^2 + y^2];
\[Theta][x_, y_] = ArcTan[x, y];
f[\[Theta]_] = \[Theta];

B = Table[(1/(r[x, y]^{\[Lambda][[n]]}*Pi))*
Integrate[
f[\[Theta][x, y]]*Sin[\[Lambda][[n]]*\[Theta][x, y]], {x, 0,
1}, {y, 0, 1}], {n, 1, Nmax}];
u[r[x, y], \[Theta][x, y]] =
Sum[B[[n]]*Sin[\[Lambda][[n]]*\[Theta][x, y]]*
r[x, y]^{\[Lambda][[n]]}, {n, 1, Nmax}];

ContourPlot[u[r[,x], \[Theta][x,y]], {x, 0, 1}, {y, 0, 1},
PlotRange -> All, ColorFunction -> "Rainbow"]



URL: ,

Subject (listing for 'Laplace in polar coordinates')
Author Date Posted
Laplace in polar coordinates Dustin 10/08/12 11:28am
Re: Laplace in polar coordinates Bill Simpson 10/08/12 6:22pm
Re: Laplace in polar coordinates Bill Simpson 10/08/12 8:36pm
Next Comment >Help | Reply To Topic