Student Support Forum: 'Solve nonlinear algberic euations' topicStudent Support Forum > General > Archives > "Solve nonlinear algberic euations"

 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic
 Author Comment/Response Ritwik Ghoshal 07/10/13 02:03am In Response To 'Re: Solve nonlinear algberic euations'---------I have replaced \[Theta]2 with \[Theta]1. and used reduce to solve the system of equations. But the last variable for output will be \[Phi]2 instead of phi2. "In[7]:= Reduce[sys, {\[Rho]1, u0, u1, \[Theta]1, \[Rho]2, u2, p2, phi2}]" . Then it gives error "Reduce::nsmet: "This system cannot be solved with the methods available to Reduce." The code is given below... \[Rho]0 = 127/100; p0 = 1013*10^2; p1 = 3*p0; \[Gamma] = 14/10; \[Phi]1 = 30*(Pi/180); sys = Simplify[{\[Rho]0*u0*Sin[\[Phi]1] == \[Rho]1*u1* Sin[\[Phi]1 - \[Theta]1], p0 + \[Rho]0*(u0*Sin[\[Phi]1])^2 == p1 + \[Rho]1*(u1*Sin[\[Phi]1 - \[Theta]1])^2, \[Rho]0* Tan[\[Phi]1] == \[Rho]1* Tan[\[Phi]1 - \[Theta]1], \[Gamma]*(p0/((\[Gamma] - 1)*\[Rho]0)) + (1/ 2)*(u0*Sin[\[Phi]1])^2 == \[Gamma]*(p1/((\[Gamma] - 1)*\[Rho]1)) + (1/ 2)*(u1*Sin[\[Phi]1 - \[Theta]1])^2, \[Rho]1*u1* Sin[\[Phi]2] == \[Rho]2*u2*Sin[\[Phi]2 - \[Theta]1], p1 + \[Rho]1*(u1*Sin[\[Phi]2])^2 == p2 + \[Rho]2*(u2*Sin[\[Phi]2 - \[Theta]1])^2, \[Rho]1* Tan[\[Phi]2] == \[Rho]2* Tan[\[Phi]2 - \[Theta]1], \[Gamma]*(p1/((\[Gamma] - 1)*\[Rho]1)) + (1/ 2)*(u1*Sin[\[Phi]2])^2 == \[Gamma]*(p2/((\[Gamma] - 1)*\[Rho]2)) + (1/2)*(u2*Sin[\[Phi]2 - \[Theta]1])^2}] Reduce[sys, {\[Rho]1, u0, u1, \[Theta]1, \[Rho]2, u2, p2, \[Phi]2}] URL: ,

 Subject (listing for 'Solve nonlinear algberic euations') Author Date Posted Solve nonlinear algberic euations Ritwik Ghoshal 07/08/13 05:25am Re: Solve nonlinear algberic euations Bill Simpson 07/08/13 4:56pm Re: Re: Solve nonlinear algberic euations Ritwik Ghoshal 07/10/13 02:03am Re: Re: Re: Solve nonlinear algberic euations Bill Simpson 07/10/13 4:35pm
 < Previous Comment | Next Comment > Help | Reply To Comment | Reply To Topic