Mathematica 9 is now available
Student Support Forum
-----
Student Support Forum: 'Solve nonlinear algberic euations' topicStudent Support Forum > General > Archives > "Solve nonlinear algberic euations"

< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic
Author Comment/Response
Ritwik Ghoshal
07/10/13 02:03am

In Response To 'Re: Solve nonlinear algberic euations'
---------
I have replaced \[Theta]2 with \[Theta]1. and used reduce to solve the system of equations. But
the last variable for output will be \[Phi]2 instead of phi2.
"In[7]:= Reduce[sys, {\[Rho]1, u0, u1, \[Theta]1, \[Rho]2, u2, p2, phi2}]" .
Then it gives error "Reduce::nsmet: "This system cannot be solved with the methods available to Reduce."

The code is given below...

\[Rho]0 = 127/100;
p0 = 1013*10^2;
p1 = 3*p0;
\[Gamma] = 14/10;
\[Phi]1 = 30*(Pi/180);
sys = Simplify[{\[Rho]0*u0*Sin[\[Phi]1] == \[Rho]1*u1*
Sin[\[Phi]1 - \[Theta]1],
p0 + \[Rho]0*(u0*Sin[\[Phi]1])^2 ==
p1 + \[Rho]1*(u1*Sin[\[Phi]1 - \[Theta]1])^2, \[Rho]0*
Tan[\[Phi]1] == \[Rho]1*
Tan[\[Phi]1 - \[Theta]1], \[Gamma]*(p0/((\[Gamma] -
1)*\[Rho]0)) + (1/
2)*(u0*Sin[\[Phi]1])^2 == \[Gamma]*(p1/((\[Gamma] -
1)*\[Rho]1)) + (1/
2)*(u1*Sin[\[Phi]1 - \[Theta]1])^2, \[Rho]1*u1*
Sin[\[Phi]2] == \[Rho]2*u2*Sin[\[Phi]2 - \[Theta]1],
p1 + \[Rho]1*(u1*Sin[\[Phi]2])^2 ==
p2 + \[Rho]2*(u2*Sin[\[Phi]2 - \[Theta]1])^2, \[Rho]1*
Tan[\[Phi]2] == \[Rho]2*
Tan[\[Phi]2 - \[Theta]1], \[Gamma]*(p1/((\[Gamma] -
1)*\[Rho]1)) + (1/
2)*(u1*Sin[\[Phi]2])^2 == \[Gamma]*(p2/((\[Gamma] -
1)*\[Rho]2)) + (1/2)*(u2*Sin[\[Phi]2 - \[Theta]1])^2}]

Reduce[sys, {\[Rho]1, u0, u1, \[Theta]1, \[Rho]2, u2, p2, \[Phi]2}]

URL: ,

Subject (listing for 'Solve nonlinear algberic euations')
Author Date Posted
Solve nonlinear algberic euations Ritwik Ghoshal 07/08/13 05:25am
Re: Solve nonlinear algberic euations Bill Simpson 07/08/13 4:56pm
Re: Re: Solve nonlinear algberic euations Ritwik Ghoshal 07/10/13 02:03am
Re: Re: Re: Solve nonlinear algberic euations Bill Simpson 07/10/13 4:35pm
< Previous Comment | Next Comment >Help | Reply To Comment | Reply To Topic