Question about Simplify and related
- To: mathgroup at yoda.ncsa.uiuc.edu
- Subject: Question about Simplify and related
- From: "Paul N. Schatz" <pns at dalton.acc.virginia.edu>
- Date: Wed, 16 Jan 1991 13:58:24 EST
This is a question about Simplify and related objects. Below is
a Mma session in which a 3x3 orthogonal matrix (u) is formed. (It is
actually the Eulerian angle matrix.) To check that I had entered the
matrix elements correctly, I multiplied the matrix by its transpose to
confirm that the result is the 3x3 unit matrix. I found it surprisingly
difficult to carry this through, and in fact was only partially
successful. What is shown below is a subset of many things I tried. To
go any further I seem to have to rather laboriously extract pieces of
the various matrix elements and work with them. In fact I have gotten to
the point below where one can show in a couple of minutes with a paper
and pencil that uutrans is indeed the 3x3 unit matrix.
Sould all this be so hard to do, or am I missing something
simple and obvious?
Paul Schatz
University of Virginia
In:=u={{c1 c2 - c3 s1 s2,c2 s1 + c3 c1 s2,s2 s3},
{-s2 c1 - c3 s1 c2, -s2 s1 + c3 c1 c2, c2 s3},
{s3 s1, -s3 c1, c3}}
Out={{c1*c2 - c3*s1*s2, c2*s1 + c1*c3*s2, s2*s3},
{-(c2*c3*s1) - c1*s2, c1*c2*c3 - s1*s2, c2*s3}, {s1*s3, -(c1*s3), c3}}
In:=uutrans=Simplify[Expand[u.Transpose[u]]]
Out={{c1^2*c2^2 + c2^2*s1^2 + c1^2*c3^2*s2^2 + c3^2*s1^2*s2^2 +
s2^2*s3^2,
c2*s2*(-c1^2 + c1^2*c3^2 - s1^2 + c3^2*s1^2 + s3^2),
-(c3*(-1 + c1^2 + s1^2)*s2*s3)},
{c2*s2*(-c1^2 + c1^2*c3^2 - s1^2 + c3^2*s1^2 + s3^2),
c1^2*c2^2*c3^2 + c2^2*c3^2*s1^2 + c1^2*s2^2 + s1^2*s2^2 + c2^2*s3^2,
-(c2*c3*(-1 + c1^2 + s1^2)*s3)},
{-(c3*(-1 + c1^2 + s1^2)*s2*s3), -(c2*c3*(-1 + c1^2 + s1^2)*s3),
c3^2 + c1^2*s3^2 + s1^2*s3^2}}
In:=rule1=s1^2+c1^2->1
Out=c1^2 + s1^2 -> 1
In:=rule2=s2^2+c2^2->1
Out=c2^2 + s2^2 -> 1
In:=rule3=s3^2+c3^2->1
Out=c3^2 + s3^2 -> 1
In:=rule123={rule1,rule2,rule3}
Out={c1^2 + s1^2 -> 1, c2^2 + s2^2 -> 1, c3^2 + s3^2 -> 1}
In:=t1=uutrans//.rule123
Out={{c1^2*c2^2 + c2^2*s1^2 + c1^2*c3^2*s2^2 + c3^2*s1^2*s2^2 +
s2^2*s3^2,
c2*s2*(-c1^2 + c1^2*c3^2 - s1^2 + c3^2*s1^2 + s3^2), 0},
{c2*s2*(-c1^2 + c1^2*c3^2 - s1^2 + c3^2*s1^2 + s3^2),
c1^2*c2^2*c3^2 + c2^2*c3^2*s1^2 + c1^2*s2^2 + s1^2*s2^2 + c2^2*s3^2,
0},
{0, 0, c3^2 + c1^2*s3^2 + s1^2*s3^2}}
In:=t2=Collect[t1,c2]//.rule123
Out={{c2^2 + c1^2*c3^2*s2^2 + c3^2*s1^2*s2^2 + s2^2*s3^2,
c2*(-(c1^2*s2) + c1^2*c3^2*s2 - s1^2*s2 + c3^2*s1^2*s2 + s2*s3^2),
0},
{c2*(-(c1^2*s2) + c1^2*c3^2*s2 - s1^2*s2 + c3^2*s1^2*s2 + s2*s3^2),
c1^2*s2^2 + s1^2*s2^2 + c2^2*(c1^2*c3^2 + c3^2*s1^2 + s3^2), 0},
{0, 0, c3^2 + c1^2*s3^2 + s1^2*s3^2}}
In:=t3=Collect[t2,s3]//.rule123
Out={{c2^2 + c1^2*c3^2*s2^2 + c3^2*s1^2*s2^2 + s2^2*s3^2,
-(c1^2*c2*s2) + c1^2*c2*c3^2*s2 - c2*s1^2*s2 + c2*c3^2*s1^2*s2 +
c2*s2*s3^2, 0}, {-(c1^2*c2*s2) + c1^2*c2*c3^2*s2 - c2*s1^2*s2 +
c2*c3^2*s1^2*s2 + c2*s2*s3^2,
c1^2*c2^2*c3^2 + c2^2*c3^2*s1^2 + c1^2*s2^2 + s1^2*s2^2 + c2^2*s3^2,
0},
{0, 0, 1}}
In:=t4=Simplify[t3]//.rule123
Out={{c2^2 + c1^2*c3^2*s2^2 + c3^2*s1^2*s2^2 + s2^2*s3^2,
c2*s2*(-c1^2 + c1^2*c3^2 - s1^2 + c3^2*s1^2 + s3^2), 0},
{c2*s2*(-c1^2 + c1^2*c3^2 - s1^2 + c3^2*s1^2 + s3^2),
c1^2*c2^2*c3^2 + c2^2*c3^2*s1^2 + c1^2*s2^2 + s1^2*s2^2 + c2^2*s3^2,
0},
{0, 0, 1}}