trig functions
- To: mathgroup at yoda.physics.unc.edu
- Subject: trig functions
- From: bappadit at ecn.purdue.edu (Banerjee Bappaditya)
- Date: Mon, 7 Jun 93 21:30:10 -0500
Hi! I am trying to find the appropriate quadrant (from -Pi to Pi) to which the inverses of trignometric functions evaluate. I have figured out the following rules... if Sin[theta]>=0 && Cos[theta]>=0, angle = theta if Sin[theta]>=0 && Cos[theta]<=0, angle = ArcCos[Cos[theta]] if Sin[theta]<0 && Cos[theta]<0, angle = ArcSin[Sin[theta]] + Pi/2 if Sin[theta]=0 && Cos[theta]=-1, angle = -Pi if Sin[theta]=-1 && Cos[theta]=0,angle = -Pi/2 if Sin[theta]<=0 && Cos[theta]>=0, angle = ArcSin[Sin[theta]] How can I do this in Mma 1.2 so that a function Angle[expression evaluating to a number] gives the correct theta ? Or in other words, reduces the "expression " to modulo Pi. I have (unsuccessfully!!!) tried Angle[theta_] := If[Sin[theta]>=0 && Cos[theta]>=0,theta, If[Sin[theta]>=0 && Cos[theta]<=0,ArcCos[Cos[theta]] , If[Sin[theta]=-1 && Cos[theta]=0,-Pi/2 , If[Sin[theta]<0 && Cos[theta]<0,ArcSin[Sin[theta]] + Pi/2 , If[Sin[theta]=0 && Cos[theta]=-1,-Pi , If[Sin[theta]<=0 && Cos[theta]>=0,ArcSin[Sin[theta]] ]]]]]] Angle[theta_] := If[Sin[theta]>=0 && Cos[theta]>=0,theta, If[Sin[theta]>=0 && Cos[theta]<=0,ArcCos[Cos[theta]] , If[Sin[theta]<0 && Cos[theta]<0,ArcSin[Sin[theta]] + Pi/2 , If[Sin[theta]<=0 && Cos[theta]>=0,ArcSin[Sin[theta]] ]]]] It does not work in the 3rd Quadrant i.e. from -Pi/2 to -Pi. I would appreciate any help. thanks, bappa. Bappaditya Banerjee bappadit at mn.ecn.purdue.edu Ray W. Herrick Laboratories Purdue University West Lafayette, IN 47907 work : (317) 494 2132 (317) 494 2147 fax : (317) 494 0787 home : (317) 743 3982