MathGroup Archive 1993

[Date Index] [Thread Index] [Author Index]

Search the Archive

Parser

  • To: mathgroup at yoda.physics.unc.edu
  • Subject: Parser
  • From: cfw2 at po.cwru.edu (Charles F. Wells)
  • Date: Tue, 29 Jun 93 10:34:27 -0400

Some interest has been shown in parsers in Mathematica.  The
following notebook contains a command AcceptQ that takes a
context free grammar and a string as arguments and determines
whether the string is generated by the grammar.  As a side
effect it prints successively a list of strings that derive to
the given string in n steps.  It stops and accepts when it finds
the start symbol in that list.  If it comes up with the empty
list, it rejects.  The algorithm is a backward exhaustive
search, so is exponential in the length of the input and the
size of the grammar.  It would be difficult to adapt it
to give a derivation tree.  A forward breadth first search would
be easier to adapt for that purpose.

Cut here:
-----------------------------------------------------------------

(*^

::[	frontEndVersion = "Microsoft Windows Mathematica Notebook Front End Version 2.1";
	microsoftWindowsStandardFontEncoding;
	fontset = title, "MS Serif", 18, L0, center, nohscroll, R32768;
	fontset = subtitle, "MS Serif", 14, L0, center, nohscroll, R32768;
	fontset = subsubtitle, "MS Serif", 12, L0, center, nohscroll;
	fontset = section, "MS Serif", 14, L0, B65280, grayBox;
	fontset = subsection, "MS Serif", 12, L0, B65280, blackBox;
	fontset = subsubsection, "MS Serif", 12, L0, B65280, whiteBox;
	fontset = text, "MS Serif", 12, L0, B65280;
	fontset = smalltext, "MS Sans Serif", 10, L0, B65280;
	fontset = input, "Courier New", 10, L0, nowordwrap;
	fontset = output, "Courier New", 10, L0, nowordwrap;
	fontset = message, "Courier New", 10, L0, nowordwrap, R65280;
	fontset = print, "Courier New", 10, L0, nowordwrap, G32768, B32768;
	fontset = info, "Courier New", 10, L0, nowordwrap, R32768, B32768;
	fontset = postscript, "Courier New", 8, L0, nowordwrap;
	fontset = name, "Helv", 10, L0, nohscroll, italic, B65280;
	fontset = header, "Helv", 18, L0, nohscroll, bold;
	fontset = footer, "Helv", 18, L0, center, nohscroll, bold;
	fontset = help, "Helv", 10, L0, nohscroll;
	fontset = clipboard, "Helv", 12, L0, nohscroll;
	fontset = completions, "Helv", 12, L0, nowordwrap, nohscroll;
	fontset = network, "Courier New", 10, L0, nowordwrap, nohscroll;
	fontset = graphlabel, "Courier New", 10, L0, nowordwrap, nohscroll;
	fontset = special1, "Helv", 12, L0, nowordwrap, nohscroll;
	fontset = special2, "Helv", 12, L0, center, nowordwrap, nohscroll;
	fontset = special3, "Helv", 12, L0, right, nowordwrap, nohscroll;
	fontset = special4, "Helv", 12, L0, nowordwrap, nohscroll;
	fontset = special5, "Helv", 12, L0, nowordwrap, nohscroll;
	fontset = Left Header, "Helv", 12, L0, nowordwrap, nohscroll;
	fontset = Left Footer, "Helv", 12, L0, nowordwrap, nohscroll;]
:[font = title; inactive; nohscroll; center; ]
Context-Free Grammars
:[font = subtitle; inactive; nohscroll; center; ]
Preliminary and incomplete version
27 January 1993
:[font = section; inactive; startGroup; Cclosed; ]
Implementation
:[font = input; nowordwrap; ]
FindPlaces[grammar_List,s_String] :=
   StringPosition[s,Part[#,2]]& /@ grammar
(*FindPlaces[grammar,string] produces a list of pairs {m,n}
   where the right side of a production in grammar occurs
   as a substring of string from position m to position n.
   The lists of pairs are grouped by production: the kth
   list of pairs correspond to the occurrences of the right
   side of production k of grammar.*)
:[font = input; nowordwrap; ]
BDL[placeslist_List,r_String,s_String] :=
   If[Length[placeslist]>0,
      StringInsert[StringDrop[s,#],r,Part[#,1]]&
           /@ placeslist,
      {}
     ]
(*placeslist should consist of a list of pairs (m,n) of positive
  integers.  BDL[placeslist,r,s] produces a list of strings,
  each of which is the result of replacing characters m through
  n of s with the string r for one of the pairs (m,n) of
  placeslist.*)
:[font = input; nowordwrap; ]
BackDerive[grammar_List,s_String] :=
   Module[{places = StringPosition[s,Part[#,2]]& /@ grammar},
  (BDL[FindPlaces[grammar,s][[#]],grammar[[#]][[1]],s]& /@
   Table[k,{k,Length[grammar]}])]
:[font = input; nowordwrap; ]
BackDerive[grammar_List,x_List] :=
   BackDerive[grammar,#]& /@ x
:[font = input; nowordwrap; ]
SimpleBackDerive[grammar_List,x_List] :=
   Union[Flatten[BackDerive[grammar,x]]]
:[font = input; nowordwrap; ]
EmptyQ[x_List] := Length[x]==0
:[font = input; endGroup; nowordwrap; ]
AcceptQ[grammar_List,s_String,maxit_Integer:30] :=
  Module[{tries=List[s],k=0},
   (While[(!MemberQ[tries,"S"] && !EmptyQ[tries] && k++<maxit),
        (tries=SimpleBackDerive[grammar,tries];
           Print[k," ",tries])
          ];
     MemberQ[tries,"S"])
        ]
:[font = section; inactive; startGroup; Cclosed; ]
Examples
:[font = text; inactive; ]
Execute the following definitions, giving you a grammar g1 
and some strings.  Then execute the commands.
:[font = input; nowordwrap; ]
g1 := {{"S","SS"},
  {"S","aSb"},
  {"S","bSa"},
  {"S","cC"},
  {"C","cC"},
  {"C","c"}}
:[font = input; nowordwrap; ]
st = "abSabbaSbSacCab"
:[font = input; nowordwrap; ]
st2="aSbbcCa"
:[font = input; nowordwrap; ]
FindPlaces[g1,"aSSS"] (*Example*)
:[font = input; nowordwrap; ]
BDL[{{1,2},{2,5}},"xy","abcde"]
:[font = input; nowordwrap; ]
SimpleBackDerive[g1,{"ab","acCb","aSbb","SS"}]
:[font = input; nowordwrap; ]
AcceptQ[g1,st]
:[font = input; endGroup; nowordwrap; ]
AcceptQ[g1,st2]
:[font = section; inactive; startGroup; Cclosed; ]
Acknowledgments
:[font = text; inactive; endGroup; ]
This work was supported by the Consolidated Natural Gas Corporation
:[font = section; inactive; startGroup; Cclosed; ]
Author & Copyright
:[font = text; inactive; ]
Charles Wells
Department of Mathematics
Case Western Reserve University
University Circle
Cleveland, OH 44106-7058
:[font = text; inactive; ]
Phone 216 368 2893 or 216 774 1926
:[font = text; inactive; endGroup; ]
Email cfw2 at po.cwru.edu
^*)

--------------------------------
cut here

--

Charles Wells
Department of Mathematics
Case Western Reserve University





  • Prev by Date: Reduction Problem
  • Next by Date: Splines for smoothing data
  • Previous by thread: Reduction Problem
  • Next by thread: Splines for smoothing data