Re: Problem: Plotting list of {InterpolatingFunction[]}
- To: mathgroup at smc.vnet.net
- Subject: [mg2585] Re: Problem: Plotting list of {InterpolatingFunction[]}
- From: rknapp (Robert Knapp)
- Date: Mon, 27 Nov 1995 21:31:42 -0500
- Organization: Wolfram Research, Inc.
In article <DI9AuM.Bx at wri.com> Patrick Jemmer <paddy at sun4.bham.ac.uk> writes: > > Hello all: I am solving a set of DEs using NDSolve to produce > a list of interpolating functions, where the list is called ans: > > > In[5]:= ans > > Out[5]= {{source[t] -> InterpolatingFunction[{0., 1.}, <>][t], > > > sink[t] -> InterpolatingFunction[{0., 1.}, <>][t], > > > conc[t] -> InterpolatingFunction[{0., 1.}, <>][t], > > > a1[t] -> InterpolatingFunction[{0., 1.}, <>][t], > > > b1[t] -> InterpolatingFunction[{0., 1.}, <>][t]}} > > I then substitute with the list sp={source[t], sink[t], ... } > > intpf =sp/. ans > > Out[6]= {InterpolatingFunction[{0., 1.}, <>][t], > > > InterpolatingFunction[{0., 1.}, <>][t], > > > InterpolatingFunction[{0., 1.}, <>][t], > > > InterpolatingFunction[{0., 1.}, <>][t], > > > InterpolatingFunction[{0., 1.}, <>][t]} > > > > I am then trying to plot these together: > > Plot[intpf,{t,0,1}]In[7]:= Plot[intpf,{t,0,1}] > ... > and an empty plot.... You are running into problems with the HoldAll attribute of Plot. Your problem has nothing to do with InterpolatingFunction objects per se. For example: vec = {x^2,x^3}; Plot[vec,{x,0,1}] does the same thing. Why? Because Plot does not evaluate its argument, it sees one item and assumes that it is to plot something which evaluates to a real number for each value of x--not a vector. The solution: wrap Evaluate[] around the first argument, as in vec = {x^2,x^3}; Plot[Evaluate[vec],{x,0,1}] or Plot[Evaluate[intpf],{t,0,1}] and you should get what you want. Rob Knapp WRI