MathGroup Archive 1996

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Integrals of Fourier Series

  • Subject: [mg3243] Re: Integrals of Fourier Series
  • From: BobHanlon at aol.com
  • Date: 20 Feb 1996 06:50:42 -0600
  • Approved: usenet@wri.com
  • Distribution: local
  • Newsgroups: wri.mathgroup
  • Organization: Wolfram Research, Inc.
  • Sender: daemon at wri.com

"Mma doesn't know that Sum and Integrate commute, and that Sin[n Pi] = 0 for
all integer n.

How to do this?"
____________________

Unprotect[Sin, Cos]; Clear[Sin, Cos];
Sin[n_ Pi /; IntegerQ[n]] = 0;
Cos[n_ Pi /; IntegerQ[n]] := (-1)^n;
Protect[Sin, Cos];

Examples:

n/: IntegerQ[n] = True;
Print[StringForm["`` = ``\n", #, ToExpression[#] // 
 Simplify]]& /@ {"Sin[n Pi]", "Sin[(2n+1) Pi/2]", 
  "Cos[n Pi]", "Cos[(2n+1) Pi/2]"};

Sin[n Pi] = 0

                       n
Sin[(2n+1) Pi/2] = (-1)

                n
Cos[n Pi] = (-1)

Cos[(2n+1) Pi/2] = 0

(* sumSquared converts square of sum to nested sums *)
sumSquared = {Sum[term_, {n_, lower_, upper_}]^2 :> 
 Sum[term (term /. n :> m), {n, lower, upper}, 
 {m, lower, upper}]};

Example of using sumSquared:

Print[StringForm["`` = ``", 
 temp = Sum[A[n] x^n/n!, {n, 1, Infinity}]^2, 
 temp /. sumSquared]]

     n
    x  A[n]                   2
Sum[-------, {n, 1, Infinity}]  = 
      n!
 
       m + n
      x      A[m] A[n]
  Sum[----------------, {n, 1, Infinity}, 
           m! n!
 
   {m, 1, Infinity}]

(* commuteIntegrateSum converts integral of sum to
   sum of integrals -- single or double sums *)
commuteIntegrateSum = {
 Integrate[Sum[term_, {n_, lower_, upper_}], x_] :> 
  Sum[Integrate[term, x], {n, lower, upper}],
 Integrate[Sum[term_, {n1_, lower1_, upper1_}, 
  {n2_, lower2_, upper2_}], x_] :> 
  Sum[Integrate[term, x], {n1, lower1, upper1}, 
  {n2, lower2, upper2}] };

Example of using commuteIntegrateSum:

Print[StringForm["`` = ``", 
 temp = Integrate[Sum[A[n] x^n/n!, {n, 1, Infinity}], x],
 temp /. commuteIntegrateSum /. n! -> (n+1)!/(n+1)]]

               n
              x  A[n]
Integrate[Sum[-------, {n, 1, Infinity}], x] = 
                n!
 
       1 + n
      x      A[n]
  Sum[-----------, {n, 1, Infinity}]
       (1 + n)!

Example of using both sumSquared and commuteIntegrateSum:

Print[StringForm["`` = ``", 
 temp = Integrate[Sum[A[n] x^n/n!, {n, 1, Infinity}]^2, x], 
 temp /. sumSquared /. commuteIntegrateSum]]

               n
              x  A[n]                   2
Integrate[Sum[-------, {n, 1, Infinity}] , x] = 
                n!
 
       1 + m + n
      x          A[m] A[n]
  Sum[--------------------, {n, 1, Infinity}, 
       (1 + m + n) m! n!
 
   {m, 1, Infinity}]



  • Prev by Date: Re: Integrals of Fourier Series
  • Next by Date: mathHDF on a PowerPC?
  • Previous by thread: Re: Integrals of Fourier Series
  • Next by thread: Re: Integrals of Fourier Series