Re: {mg4091] ODE

• To: mathgroup at smc.vnet.net
• Subject: [mg4154] Re: {mg4091] ODE
• From: hagai at helix.nih.gov (Hagai Agmon-Snir)
• Date: Sat, 8 Jun 1996 13:23:30 -0400
• Sender: owner-wri-mathgroup at wolfram.com

```At 1:16 4/6/96, Robert Zimmerman wrote:
>     While  lectureing with Mathematica I noticed that the following ODE
>does  not return the correct  initial conditions.
>    Is this an error or standard procedure?
>
> eq1=    {    x y'[x]+(x+2) y[x]==2  Exp[-x],  y[0]==y0};
>
> sol=    y[x]/.(eq1//  DSolve[#,y[x] ,x]&//Flatten)
>
>
> sol/.x->0       (*Should equal to y0 and not 1*)
>
>Out[64]=      E^(-x)
>Out[67]=        1     (*Should equal to y0 and not 1*)

In[19]:=
gensol=DSolve[x y'[x]+(x+2) y[x]==2  Exp[-x],y[x],x]
Out[19]=
-x    -x - 2 Log[x]
{{y[x] -> E   + E              C[1]}}

At x=0, y[0] is infinity or -infinity, unless C[1]=0. I suppose that
Mathematica assumes that y0 is finite (initial conditions that you write

Hagai

>>>>>>>>>>>>>>>>>>  ================================  <<<<<<<<<<<<<<<<<
Hagai Agmon-Snir                                    Tel: (301) 496-9972
(301) 496-4325
Surface mail:                                       Fax: (301) 402-0535
Mathematical Research Branch, NIDDK
9190 Rockville Pike - Suite 350
Bethesda, MD 20814-3800
USA

E-mail: hagai at helix.nih.gov         WWW: http://mrb.niddk.nih.gov/hagai
<<<<<<<<<<<<<<<<<  ================================  >>>>>>>>>>>>>>>>>>

==== [MESSAGE SEPARATOR] ====

```

• Prev by Date: Q: System of 2 Eqs w/ 2 Unknowns (Higher Degree).
• Next by Date: New Diff Eq solver
• Previous by thread: Q: System of 2 Eqs w/ 2 Unknowns (Higher Degree).
• Next by thread: New Diff Eq solver