Re: Plot problem
- To: mathgroup at smc.vnet.net
- Subject: [mg3612] Re: Plot problem
- From: ianc (Ian Collier)
- Date: Thu, 28 Mar 1996 00:10:35 -0500
- Organization: Wolfram Research, Inc.
- Sender: owner-wri-mathgroup at wolfram.com
In article <4j7hbd$af4 at dragonfly.wolfram.com>, Pierluigi Puccetti <puccetti at sienanet.it> wrote: > Chiara Mocenni Puccetti > Universita' di Siena - ITALY > > f[t_]:=(22.39638707132903 - 38.3879329433359*I)*E^((-0.005 - > 0.999987499921874*I)*t) + > > (7.912734995684308 - 0.5556111312856052*I)*Cos[1.1*t] + > > (-17.89146077765513 + 1.146859050666162*I)*Sin[1.1*t]; > > This function is the solutin > on (obtained with DSolve) of a system of two differential equations. > There are complex numbers, > and I am enable to plot this functions in the time variable. > I am not yet really expert, there is someone that can help me ? > > Thanks you > > Chiara Mathematica's plotting functions are only able to plot quantities that evaluate to real numbers. In this case you can plot either the real or imaginary parts of the function - or you can plot one against the other using ParametricPlot. Here are some examples: In[1]:= f[t_]:=(22.39638707132903 - 38.3879329433359*I)* E^((-0.005 - 0.999987499921874*I)*t) + (7.912734995684308 - 0.5556111312856052*I)*Cos[1.1*t] + (-17.89146077765513 + 1.146859050666162*I)*Sin[1.1*t]; In[2]:= Plot[ Re[ f[t] ], {t,-10,10}] Out[2]= -Graphics- In[3]:= Plot[ Im[ f[t] ], {t,-10,10}] Out[3]= -Graphics- In[4]:= ParametricPlot[ {Re[ f[t] ], Im[ f[t] ]}, {t,-10,10}] Out[4]= -Graphics- I hope this helps. --Ian ----------------------------------------------------------- Ian Collier Wolfram Research, Inc. ----------------------------------------------------------- tel:(217) 398-0700 fax:(217) 398-0747 ianc at wolfram.com Wolfram Research Home Page: http://www.wolfram.com/ ----------------------------------------------------------- ==== [MESSAGE SEPARATOR] ====