       Re: cancel function

• To: mathgroup at smc.vnet.net
• Subject: [mg5276] Re: [mg5212] cancel function
• From: BobHanlon at aol.com
• Date: Mon, 18 Nov 1996 02:30:22 -0500
• Sender: owner-wri-mathgroup at wolfram.com

```eqn1 = ( a E^(I t w) (b + c x) == 0 )

I t w
a E      (b + c x) == 0

eqn1/E^(I t w)

-I t w     I t w
E       (a E      (b + c x) == 0)

Note that this is dividing an equation by an expression which is undefined.

Cancel[eqn1/E^(I t w)]

-I t w     I t w
E       (a E      (b + c x) == 0)

Applying Cancel doesn't change anything since there is nothing to cancel.
Use
a replacement rule:

eqnSimplify = (a_ (lhs_ == rhs_) -> a lhs == a rhs);
eqn1/E^(I t w) /. eqnSimplify

a (b + c x) == 0

FORWARDED MESSAGE:

Subj:  [mg5212] cancel function
From:  Ralheid at aol.com
To: mathgroup at smc.vnet.net

I cannot seem to get mathematica to cancel the exponetial function in the
following relationship;

in(1) =  eqn1 = a E^(I w t )(b + c x) == 0
out(1)= a E^(I w t ) (b + c x) == 0

in(2) = eqnw = Cancel[eqn1/E^(I w t )]
out(2) = E^(-I w t )( a E^(I w t )(b + c x) == 0)

I seem to think that cancel should reduce above to:

out(2) = eqnw = (b + c x) == 0

any help would be appreciated.

R. Alheid

```

• Prev by Date: Wavelets...
• Next by Date: Re: Inverse of Error Function
• Previous by thread: cancel function
• Next by thread: labelling contours