Re: FrameTick position

• To: mathgroup at smc.vnet.net
• Subject: [mg4775] Re: FrameTick position
• From: Dirk Kautz <kautz at tyto.bio2.rwth-aachen.de>
• Date: Fri, 13 Sep 1996 13:54:55 -0400
• Organization: RWTH -Aachen / Rechnerbetrieb Informatik
• Sender: owner-wri-mathgroup at wolfram.com

```Dirk Kautz <kautz at tyto.bio2.rwth-aachen.de> writes:

> If one sets the negative length of FrameTicks on the y-axis to 0.02 (or
> longer), the ticklabels will be to close to the ticks. This doesn't look
> good. The only way to fix that I found was to edit the postscript file
> (find the ticklabels, replace the x offset of 0.02 (!) by eg 0.04 for
> each
> of them and maybe also shift the FrameLabel).

Thanks to Richard Mercer (richard at seuss.math.wright.edu), who has
implemented this in an upcoming version of calcE (
http://seuss.math.wright.edu/calcE/calcE.html
), here is the solution to my problem which might be helpful to others:

(**********************************************************************)
\$DefaultFont=List["Times-Roman", 24];
xlabel="Time [ms]";
yscale[maxy_] :=
Map[Append[#,{0,0.02}]&, UnitScale[0,maxy,1,5]];

gr=Show[ListPlot[{0,2,1,5}],
Frame->{ True, True, False, False},
FrameTicks->{Automatic,yscale[6]},
DisplayFunction->Identity,
FrameLabel->{xlabel,"Response"} ];

Show[FullGraphics[gr] /.
{Text[t_,{a_,b_},{p_,0.}]:>Text[t,Scaled[{ -0.02,0},{ a, b}],{p, 0.}],
Text[t_,{a_,b_},{p_,0.},{0.,q_}]:>
Text[t,Scaled[{ -0.08, 0},{a,b}],{ p, 0},{0.,q}],
Text[xlabel,{a_,b_},{0.,2.}]:>
Text[xlabel,Scaled[{ 0, -0.08},{a,b}],{ 0, 2}]
},
PlotRange->All
]
(**********************************************************************)
___________________________________________________________________________
\__/   Dirk Kautz (kautz at tyto.bio2.rwth-aachen.de)  ph: +49(0)241-80-4863
##    Kopernikusstr. 16,                    pgp key available on request
___\/__  D-52074 Aachen, Germany      http://www.bio2.rwth-aachen.de/~kautz
""

==== [MESSAGE SEPARATOR] ====

```

• Prev by Date: FindMinimum Termination Criteria?
• Next by Date: help: Integrate[(1-x)^(-1/2)*(1-y)^(-1/2)/(x+y),{x,0,1},{y,0,1}]
• Previous by thread: Re: FindMinimum Termination Criteria?
• Next by thread: help: Integrate[(1-x)^(-1/2)*(1-y)^(-1/2)/(x+y),{x,0,1},{y,0,1}]