Re: Bug in SymbolicSum, or am I just stupid?
- To: mathgroup at smc.vnet.net
- Subject: [mg5637] Re: [mg5593] Bug in SymbolicSum, or am I just stupid?
- From: Dave Snead <dsnead at pacbell.net>
- Date: Wed, 1 Jan 1997 21:05:01 -0500
- Organization: Saguaro Software
- Sender: owner-wri-mathgroup at wolfram.com
Sean Luke wrote:
>
> I'm wondering if I'm just doing something really dumb, or if there
> is some profound reason why Mathematica 2.2 seems to be finding different
> symbolic infinite sumations for the same expression:
>
> Mathematica 2.2 for SPARC
> Copyright 1988-94 Wolfram Research, Inc.
> -- Terminal graphics initialized --
>
> In[1]:= <<Algebra`SymbolicSum`
>
> In[2]:= ?SymbolicSum
> SymbolicSum[f, {i, imin, imax}] attempts to find the value of Sum[f, {i, imin,
> imax} ] for symbolic imin,imax. SymbolicSum[f, {i, imax}] evaluates the sum
> of f with i running from 1 to imax.
>
> In[2]:= Simplify[(2)( 1/(2^n ) - ((n+1)/2)(1/(2^n))] (* expression 1 *)
>
> 3 - n
> Out[2]= -----
> n
> 2 2
>
> In[3]:= Simplify[(2 - (n+1)/2) (1/(2^n))] (* expression 2--should be same *)
>
> 3 - n
> Out[3]= -----
> n
> 2 2
>
> In[4]:= SymbolicSum[(2)( 1/(2^n) ) - ((n+1)/2)(1/(2^n)),{n,1,Infinity}] (*1*)
>
> 1
> Out[4]= -
> 2
>
> In[5]:= SymbolicSum[(2 - (n+1)/2) (1/(2^n)),{n,1,Infinity}] (*2*)
>
> 3
> Out[5]= -(-)
> 4
>
> In[6]:= SymbolicSum[Out[3],{n,1,Infinity}] (* simplified *)
>
> 3
> Out[6]= -(-)
> 4
>
> Thanks very much anyone. Sorry if this is a FAQ or obnoxious newbie question.
>
> Sean Luke
> U Maryland at College Park, very late a night
> seanl at cs.umd.edu
This looks like a bug in 2.2:
Mathematica 2.23 under Windows 95 gives
In[1]:= <<Algebra`SymbolicSum`
In[2]:= SymbolicSum[(3-n)/2^(n+1),{n,1,Infinity}]
3
Out[2]= -(-)
4
while Mathematica 3.0 (which has apparently incorporated
the SymbolicSum functionality into Sum) gives
In[1]:= Sum[(3-n)/2^(n+1),{n,1,Infinity}]
1
Out[1]= -
2
which is clearly the correct answer
Dave Snead
dsnead at pacbell.net