       Re: y=f(t) vs t=f(y)

• To: mathgroup at smc.vnet.net
• Subject: [mg6309] Re: [mg6267] y=f(t) vs t=f(y)
• From: seanross at worldnet.att.net
• Date: Sat, 8 Mar 1997 00:26:33 -0500 (EST)
• Sender: owner-wri-mathgroup at wolfram.com

```Larry Smith wrote:
>
>      I would appreciate anyone helping me with using Mathematica to solve
>      the following (geometrically, numerically, etc)
>
>      I need to find an example of a function y=f(t) such that f'(0)=1 but t
>      is not a function of y in any neighborhood of 0.  I just arbitrarily
>      picked f'(0)=1 you could pick something with value of 1. But the trick
>      is that t is not a function of y in this neighborhood.  Any
>      suggestions?
>
>      Larry
>      larry.smith at clorox.com
>      or
>      lsmith at tcusa.net
>
>      601-939-8555 ext 255

mathematics discipline and use the word function to mean what I would
call a single valued continuous function.  If my guess is correct, then
choose something like y=Sin[x] or y^2=x^2 etc, in which y is a function
of x, but x is a multiple valued function of y.

```

• Prev by Date: Upvalues related to "Times"
• Next by Date: Re: Differential Equations system
• Previous by thread: Re: Upvalues related to "Times"
• Next by thread: Re: y=f(t) vs t=f(y)