Re: Q: Union and precision.
- To: mathgroup at smc.vnet.net
- Subject: [mg8544] Re: Q: Union and precision.
- From: bruck at math.usc.edu (Ronald Bruck)
- Date: Sat, 6 Sep 1997 23:16:12 -0400
- Organization: University of Southern California
- Sender: owner-wri-mathgroup at wolfram.com
In article <5uleeq$cp6 at smc.vnet.net>, Gadi Oron <oron at manet.pmmh.espci.fr=
>
wrote:
> Hello again,
>
> How can I force Union to consider numbers equal in the current
> precision as equal? Explanation:
>
> In:= a=SetPrecision[1.234567,2]
> Out:= 1.2
>
> In:= b=SetPrecision[1.234561,2] (* Notice difference *)
> Out:= 1.2
>
> In:= a==b
> Out:= True
>
> In:= Union[{a,b}]
> Out:= {1.2,1.2} (* !!! *)
>
> How does Union evaluates equalities? How can I force it to do it the ri=
ght
> way??
Hmmm. Interesting. And, perhaps, a little bizarre.
When you do FullForm[a] you get 1.234567`2, whereas FullForm[b] returns
1.234561`2. So Mathematica is storing the approximate real with precisio=
n
information. And asking whether "a==b" is different from asking whet=
her
"a===b" (since you're asking for equality rather than identity).
So apparently Union is using identity to reject duplicates, and you want =
it
to use simple equality. There is an option to Union, documented in the
help browser:
Union[a, =8A , SameTest->test] applies test to each pair of elements
in the a to determine whether they should be considered the same.
So you could make "test" by a check for equality instead of identity:
mytest = (#1)==(#2)&
Then Union[{a,b},SameTest->mytest] returns {1.2}, as desired. (The actua=
l
element used seems to be b.)
--Ron Bruck