Re:Fourier Transform PDF Characteristic Function
- To: mathgroup at smc.vnet.net
- Subject: [mg14994] Re:[mg14955] Fourier Transform PDF Characteristic Function
- From: "Tomas Garza" <tgarza at mail.internet.com.mx>
- Date: Wed, 2 Dec 1998 03:59:14 -0500
- Sender: owner-wri-mathgroup at wolfram.com
Yves: I am pasting a copy of a session in my machine (PC, Windows 95, Mathematica 3.0), where the InverseFourierTransform gives the correct result. Perhaps you should contact Wolfram support. In[8]:= <<Calculus`FourierTransform` In[14]:= ft=FourierTransform[\!\(E\^\(-\(x\^2\/2\)\)\/\ at \(2\ \[Pi]\)\),x,t] Out[14]= \!\(E\^\(-\(t\^2\/2\)\)\) In[15]:= InverseFourierTransform[ft,t,x] Out[15]= \!\(E\^\(-\(x\^2\/2\)\)\/\ at \(2\ \[Pi]\)\) Good luck, Tomas Garza Mexico City Yves Gavreau wrote: >I'm trying to find the PDF from a Characteristic Function using >Mathematica. I'm not a mathematician just a curious guy. Here is the >problem (this is a paste from the notebook). ---------------------------------------------------------------------------- -------------------------------------------------------- >Load the needed packages <<Statistics`NormalDistribution` <<Calculus`FourierTransform` >This is the CharacteristicFunction of a NormalDistribution In[3]:= >CF=CharacteristicFunction[NormalDistribution[\[Mu],\[Sigma]],t] Out[3]= \!\(E\^\(I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\)\) Also this is suppose >to be the FourierTransform of a NormalDistribution PDF In[5]:= ft=FourierTransform[PDF[NormalDistribution[\[Mu],\[Sigma]],x],x,t] Out[5]= \!\(E\^\(I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\)\) Now with the InverseFourierTransform we are suppose to get back the NormalDistribution PDF In[6]:= InverseFourierTransform[ft,t,x] Out[6]= \!\(InverseFourierTransform[E\^\(I\ t\ \[Mu] - \(t\^2\ \[Sigma]\^2\)\/2\), t, x]\) >As you can see it doesn't give back the NormalDistribution PDF