Re: Fibonacci
- To: mathgroup at smc.vnet.net
- Subject: [mg13189] Re: Fibonacci
- From: dreissNOSPAM at nospam.earthlink.net (David Reiss)
- Date: Mon, 13 Jul 1998 07:42:39 -0400
- Organization: EarthLink Network, Inc.
- References: <6nsiqc$f39@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
When using the add-on package Calculus`Limit` evaluation of Limit[Fibonacci[n]/Fibonacci[n-1], n -> Infinity] returns 1 rather than GoldenRatio. So, bug it is. I will pass it on to the wri bugs folks... In article <6nsiqc$f39 at smc.vnet.net>, BobHanlon at aol.com wrote: > On a Macintosh running Mathematica 3.0.1, the limit returns unevaluated: > > Limit[Fibonacci[n]/Fibonacci[n-1], n -> Infinity] > > Limit[Fibonacci[n]/Fibonacci[-1 + n], n -> Infinity] > > fib[n_] := (((1+Sqrt[5])/2)^n - (-((1+Sqrt[5])/2))^-n)/Sqrt[5] > > Table[fib[n], {n, 10}]//FullSimplify > > {1,1,2,3,5,8,13,21,34,55} > > Limit[fib[n]/fib[n-1], n -> Infinity] > > Limit[(-(1/2*(-1 - Sqrt[5]))^(-n) + (1/2*(1 + Sqrt[5]))^n)/ > (-(1/2*(-1 - Sqrt[5]))^(1 - n) + > (1/2*(1 + Sqrt[5]))^(-1 + n)), n -> Infinity] > > However, since > > fib[n]/fib[n-1] == (fib[n-1] + fib[n-2])/fib[n-1] == 1 + > fib[n-2]/fib[n-1] > > Then, the limit must satisfy the equation (x == 1 + 1/x) > > Select[x /. Solve[x == 1 + 1/x, x], #>0&] > > {1/2*(1 + Sqrt[5])} > > which is the Golden Ratio > > %[[1]] == GoldenRatio // N > > True > > Bob Hanlon > > In a message dated 7/4/98 8:01:56 PM, tobi.kamke at t-online.de wrote: > > >I've a problem. I thought that Limit[Fibonacci[n]/Fibonacci[n-1], n -> > >Infinity] is GoldenRatio. > > > >Mathematica says 1. > >What's wrong? -- David Reiss dreissNOSPAM at nospam.earthlink.net http://home.earthlink.net/~dreiss To send personal email, remove the words "nospam" and "NOSPAM" from the email address