Re: Re: Boundary cond. at Infinity
- To: mathgroup@smc.vnet.net
- Subject: [mg12202] Re: [mg12160] Re: [mg12097] Boundary cond. at Infinity
- From: Bob Hanlon <BobHanlon@aol.com>
- Date: Fri, 1 May 1998 03:08:51 -0400
I believethat this notebook is a clearer and more accurate response than
my first response.
Bob Hanlon
__________________________
Notebook[{
Cell[BoxData[
\(TraditionalForm\`Needs["\<Algebra`InequalitySolve`\>"]\)],
"Input"],
Cell[BoxData[
FormBox[
RowBox[{\(f(x_, a_)\), ":=",
TagBox[
RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
RowBox[{
RowBox[{
TagBox[\(\(a + 1\)\/2\),
(Editable -> True)], ",",
TagBox["1",
(Editable -> True)]}], ";",
TagBox[\(\(a + 1\)\/2 + 1\),
(Editable -> True)], ";",
TagBox[\(-\[ExponentialE]\^\(2\ x\)\),
(Editable -> True)]}], ")"}],
InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]]}],
TraditionalForm]], "Input"],
Cell["For n=0,1,2,3,... there is a discontinuity at", "Text"],
Cell[CellGroupData[{
Cell[BoxData[
\(TraditionalForm\`Solve[\(a + 1\)\/2 + 1 == \(-n\), a]\)],
"Input"],
Cell[BoxData[
\(TraditionalForm\`{{a \[Rule] \(-2\)\ n - 3}}\)], "Output"] }, Open
]],
Cell["That is, there is a discontinuity for a = -3,-5,-7,...", "Text"],
Cell[BoxData[
\(TraditionalForm
\`\(Plot3D[f[x, a], \ {a, \(-8.1\), 4.1}, {x, \(-1.5\), 4},
PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None},
PlotRange -> {\(-50\), 50}, \ ImageSize -> {450, 365}]; \)\)],
"Input"],
Cell[TextData[{
"Since the argument (-",
Cell[BoxData[
\(TraditionalForm\`\[ExponentialE]\^\(2 x\)\)]],
") is negative, the terms of the hypergeometric series alternate
signs. \ This is not a convenient form for determining the limit.
Using a linear \ transformation (Abramowitz and Stegun, 15.3.5) to
obtain a positive \ argument:"
}], "Text"],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"trans", "=",
RowBox[{
TagBox[
RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
RowBox[{
RowBox[{
TagBox["a_",
(Editable -> True)], ",",
TagBox["b_",
(Editable -> True)]}], ";",
TagBox["c_",
(Editable -> True)], ";",
TagBox["z_",
(Editable -> True)]}], ")"}],
InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
"\[Rule]",
FractionBox[
TagBox[
RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
RowBox[{
RowBox[{
TagBox["b",
(Editable -> True)], ",",
TagBox[\(c - a\),
(Editable -> True)]}], ";",
TagBox["c",
(Editable -> True)], ";",
TagBox[\(z\/\(z - 1\)\),
(Editable -> True)]}], ")"}],
InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
\(\((1 - z)\)\^b\)]}]}], ";"}], TraditionalForm]],
"Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(TraditionalForm\`f2\ = \ Simplify[f(x, a) /. trans]\)], "Input"],
Cell[BoxData[
FormBox[
FractionBox[
TagBox[
RowBox[{\(\(\[ThinSpace]\_2\)F\_1\), "(",
RowBox[{
RowBox[{
TagBox["1",
(Editable -> True)], ",",
TagBox["1",
(Editable -> True)]}], ";",
TagBox[\(\(a + 3\)\/2\),
(Editable -> True)], ";",
TagBox[\(\[ExponentialE]\^\(2\ x\)\/\(1 +
\[ExponentialE]\^\(2\ x\)\)\),
(Editable -> True)]}], ")"}],
InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
\(1 + \[ExponentialE]\^\(2\ x\)\)], TraditionalForm]], "Output"]
}, Open ]],
Cell["As x approaches +Infinity, and for", "Text"],
Cell[CellGroupData[{
Cell[BoxData[
\(TraditionalForm\`InequalitySolve(\(a + 3\)\/2 - 1 - 1 > 0, a)\)],
"Input"],
Cell[BoxData[
\(TraditionalForm\`a > 1\)], "Output"] }, Open ]],
Cell["the numerator will tend towards", "Text"],
Cell[CellGroupData[{
Cell[BoxData[
FormBox[
TagBox[
RowBox[{\(\(\[ThinSpace]\_2\) F\_1\), "(",
RowBox[{
RowBox[{
TagBox["1",
(Editable -> True)], ",",
TagBox["1",
(Editable -> True)]}], ";",
TagBox[\(\(a + 3\)\/2\),
(Editable -> True)], ";",
TagBox["1",
(Editable -> True)]}], ")"}],
InterpretTemplate[ Hypergeometric2F1[ #, #2, #3, #4]&]],
TraditionalForm]], "Input"],
Cell[BoxData[
\(TraditionalForm\`\(a + 1\)\/\(a - 1\)\)], "Output"] }, Open ]],
Cell["\<\
And the denominator tends to Infinity. For a>1 the limit as x goes \ to
+Infinity is then zero.\
\>", "Text"],
Cell[BoxData[
\(TraditionalForm
\`\(Plot3D[f[x, a], {a, \(-1\), 4.1}, {x, \(-1.5\), 4},
PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None},
ImageSize -> {450, 365}]; \)\)], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(TraditionalForm\`f2\ /. \ x -> \(-Infinity\)\)], "Input"],
Cell[BoxData[
\(TraditionalForm\`1\)], "Output"] }, Open ]],
Cell[BoxData[
\(TraditionalForm
\`\(Plot3D[f[x, a], {a, \(-8.1\), 4.1}, {x, \(-15\), \(-3\)},
PlotPoints \[Rule] 35, AxesLabel \[Rule] {"\<a\>", "\<x\>", None},
PlotRange -> {.975, 1.025}, \ ImageSize -> {450, 365}]; \)\)],
"Input"] },
FrontEndVersion->"Macintosh 3.0",
ScreenRectangle->{{0, 1024}, {0, 748}}, WindowSize->{729, 701},
WindowMargins->{{20, Automatic}, {Automatic, 6}}, ShowCellLabel->False,
MacintoshSystemPageSetup->"\<\
00<0001804P000000]P2:?oQon82n@960dL5:0?l0080001804P000000]P2:001
0000I00000400`<300000BL?00400@0000000000000006P801T1T00000000000
00000000000000000000000000000000\>"
]