Re: Plotting w/o artifacts at discontinuities
- To: mathgroup@smc.vnet.net
- Subject: [mg12168] Re: [mg12082] Plotting w/o artifacts at discontinuities
- From: "Jürgen Tischer" <jtischer@pitagoras.univalle.edu.co>
- Date: Fri, 1 May 1998 03:08:21 -0400
Hi Bruce,
I hope you are satisfied with a bare minimum, to be elaborated along the
lines of the plot functions say in the graphics package.
In[1]:= nojump[{a_, b_}, {c_, d_}] := Abs[(d - b)/(c - a)] < 5000
In[2]:= splitLine[Line[li_]]:=Line/@Cases[Split[li,nojump],{_,__}]
splitLine[x_]:=splitLine/@x;
In[3]:= plotNoJumps[fun_,rang_,ops___Rule]:=
With[{gr=Plot[fun,rang,DisplayFunction->Identity, ops]},
Show[splitLine[gr],DisplayFunction->$DisplayFunction]]
Jürgen
-----Original Message-----
From: Bruce Cohen %FEC <bic@cgl.ucsf.EDU> To: mathgroup@smc.vnet.net
Subject: [mg12168] [mg12082] Plotting w/o artifacts at discontinuities
>I would like to be able to get plots that do not have artifacts from
>discontinuities without having to know where the problem[s] will be in
>advance.
>
>For example, I would like to be able to say
> Plot[1/(1+x), {x,-2,1}]
>and get a graph without the vertical line at x==-1. Though
> p1=Plot[1/(1+x), {x,-2,-1}, DisplayFunction->Identity];
> p2=Plot[1/(1+x), {x,-1,1}, DisplayFunction->Identity];
> Show[p1,p2, DisplayFunction->$DisplayFunction]; does the trick, it
>requires my anticipation of the problem at x==1.
>
>
>Thanks.
>
>-Bruce
> Bruce Cohen | INTERNET: bic@cgl.ucsf.edu
> Lick-Wilmerding High School |
>bic@lick.pvt.k12.ca.us
> 755 Ocean Avenue | VOICE: (415) 333-4021
> San Francisco, CA 94112 | FAX: (415) 333-9443 --
> Bruce Cohen | INTERNET: bic@cgl.ucsf.edu
> Lick-Wilmerding High School |
>bic@lick.pvt.k12.ca.us
> 755 Ocean Avenue | VOICE: (415) 333-4021
> San Francisco, CA 94112 | FAX: (415) 333-9443
>