Re: Solving simultaneous eqns
- To: mathgroup at smc.vnet.net
- Subject: [mg14285] Re: [mg14199] Solving simultaneous eqns
- From: Jurgen Tischer <jtischer at col2.telecom.com.co>
- Date: Mon, 12 Oct 1998 13:52:02 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Hi Yun,
I have tried to solve your equations, but my solution is not very
convincing. I add the notebook anyway.
Jurgen
Yeoung-Sang Yun wrote:
> Hello!
>
> I want to know how to solve the following simulaneous equations in
> Mathematica:
>
> x=x^1.2/(2*x^3+y^0.7+4*z^2.5)
> y=y^0.7/(2*x^0.6+y^2+z^2.2)
> z=0.9*z^1.5/(x^0.7+2*y^0.2+z^1.1)
>
> Thanks for helping.
> Y.-S. Yun
> Department of Chemical Engineering
> Pohang University of Science and Technology San 31, Hyoja-dong, Pohang
> 790-784, Republic of Korea
(***********************************************************************
Mathematica-Compatible Notebook
This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the
notebook starts with the line of stars above.
To get the notebook into a Mathematica-compatible application, do one of
the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be sent
directly in email or through ftp in text mode. Newlines can be CR, LF
or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info at wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from Wolfram
Research.
***********************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 4339, 136]*)
(*NotebookOutlinePosition[ 4990, 159]*) (*
CellTagsIndexPosition[ 4946, 155]*) (*WindowFrame->Normal*)
Notebook[{
Cell["\<\
To facilitate writing for me I changed the equations to a function whose
\ zeros are the solutions of your problem. \ \>", "Text"],
Cell[BoxData[
\(f[x_, y_, z_] = {x - x\^1.2\/\(2\ x\^3 + y\^0.7 + 4\ z\^2.5\),
y - y\^0.7\/\(2\ x\^0.6 + y\^2 + z\^2.2\),
z - \(0.9\ z\^1.5\)\/\(x\^0.7 + 2\ y\^0.2 + z\^1.1\)}\)],
"Input"],
Cell["\<\
First I observe that for every two variables zero I can calculate a
solution.\ \
\>", "Text"],
Cell[BoxData[
\(Solve[f[x, 0, 0] == 0]\)], "Input"],
Cell[BoxData[
\(Solve[f[0, y, 0] == 0]\)], "Input"],
Cell[BoxData[
\(Solve[f[0, 0, z] == 0]\)], "Input"],
Cell["\<\
Now I'm just searching around with FindRoot. (I checked with much more \
values, this is just the result.)\
\>", "Text"],
Cell[BoxData[
\(FindRoot[f[x, y, z], {x, 1}, {y, 1}, {z, 0}, MaxIterations -> 100]
//
Chop\)], "Input"],
Cell[BoxData[
\(FindRoot[f[x, y, z], {x, 5}, {y, 6}, {z, 1}, MaxIterations -> 100]
//
Chop\)], "Input"],
Cell[TextData[{
" I start having the idea there are no other solutions with
z\[NotEqual]0 \ than the one already found. Now if ",
Cell[BoxData[
\(TraditionalForm\`z == 0\)]],
", the third equation is satisfied, so to look for posible solutions I
look \ at the intersections of the zeros of the first and the second
equation and \ find there are two solutions, the two I found already."
}], "Text"],
Cell[BoxData[
\(<< Graphics`\)], "Input"],
Cell[BoxData[
\(ImplicitPlot[{Evaluate[\(f[x, y, 0]\)[\([1]\)]] == 0,
Evaluate[\(f[x, y, 0]\)[\([2]\)]] == 0}, {x, 0.0000001, 2}, {y,
0.00001, 2}]\)], "Input"],
Cell[TextData[{
"To see what happens for ",
Cell[BoxData[
\(TraditionalForm\`z > 0\)]],
" I use ContourPlot3D whose default is to show the 0-surface." }],
"Text"],
Cell[BoxData[
\(ContourPlot3D[
Evaluate[\(f[x, y, z]\)[\([1]\)]], {x, .0000001, 1.5}, {y,
.00000001,
1}, {z, 0, 1}, MaxRecursion -> 0, PlotPoints -> 30]\)],
"Input"],
Cell[BoxData[
\(ContourPlot3D[
Evaluate[\(f[x, y, z]\)[\([2]\)]], {x, .0000001, 1.5}, {y,
.00000001,
1}, {z, 0, 1}, MaxRecursion -> 0, PlotPoints -> 30]\)],
"Input"],
Cell[BoxData[
\(ContourPlot3D[
Evaluate[\(f[x, y, z]\)[\([3]\)]], {x, .0000001, 1.5}, {y,
.00000001,
1}, {z, 0, 1}, MaxRecursion -> 0, PlotPoints -> 30]\)],
"Input"],
Cell[BoxData[
\(Show[%, %%, %%%]\)], "Input"],
Cell[TextData[{
"Looks like there is no solution for ",
Cell[BoxData[
\(TraditionalForm\`z > 0\)]],
". So the above solutions should be all (real solutions)." }], "Text"]
},
FrontEndVersion->"Microsoft Windows 3.0", ScreenRectangle->{{0, 1024},
{0, 740}}, WindowSize->{496, 632},
WindowMargins->{{150, Automatic}, {Automatic, 9}} ]
(***********************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at the
top of the file. The cache data will then be recreated when you save
this file from within Mathematica.
***********************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 140, 3, 52, "Text"],
Cell[1852, 54, 210, 3, 68, "Input"], Cell[2065, 59, 103, 3, 33, "Text"],
Cell[2171, 64, 55, 1, 30, "Input"],
Cell[2229, 67, 55, 1, 30, "Input"],
Cell[2287, 70, 55, 1, 30, "Input"],
Cell[2345, 73, 130, 3, 52, "Text"],
Cell[2478, 78, 114, 2, 70, "Input"], Cell[2595, 82, 114, 2, 70,
"Input"], Cell[2712, 86, 410, 8, 90, "Text"],
Cell[3125, 96, 45, 1, 30, "Input"],
Cell[3173, 99, 181, 3, 70, "Input"], Cell[3357, 104, 174, 5, 33,
"Text"], Cell[3534, 111, 186, 3, 70, "Input"], Cell[3723, 116, 186, 3,
70, "Input"], Cell[3912, 121, 186, 3, 70, "Input"], Cell[4101, 126, 49,
1, 30, "Input"], Cell[4153, 129, 182, 5, 33, "Text"]
}
]
*)
(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)