Re: Integral?
- To: mathgroup at smc.vnet.net
- Subject: [mg14131] Re: Integral?
- From: Daniel Lichtblau <danl>
- Date: Mon, 28 Sep 1998 03:51:46 -0400
- Organization: Wolfram Research, Inc.
- References: <6ud2f0$17f@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Torben Mikael Hansen wrote: > > Hi > How do I make Mathematica perform the double integral > Integrate[Integrate[Exp[x]*Exp[y]*p[x,y],{x,-Infinity,Infinity}],{y,-Infinity,Infinity}] > > where > p[x_,y_]:=1/(2 Pi s^2 Sqrt[1-r^2])*Exp[-(x^2-2 r s x y +y^2)/(2 s^2 > (1-r^2))] > and I know > r is a real, positive number less than 1 s is a real, positive number > > > Regards > Torben M. Hansen I cannot make the current version of Mathematica do this integral. If in our development version I do p[x,y] = 1/(2*Pi*s^2*Sqrt[1-r^2])* Exp[-(x^2-2*r*s*x*y+y^2)/(2*s^2*(1-r^2))]; igrand = Exp[x]*Exp[y]*p[x,y]; then I can get an undersimplified result as below. In[6]:= InputForm[Timing[Integrate[igrand, {x,-Infinity,Infinity}, {y,-Infinity,Infinity}, Assumptions->{r>0,r<1,s>0}]]] Out[6]//InputForm= {9.010000000000005*Second, E^(((-1 + r^2)*s^2)/(-1 + r*s))/ (Sqrt[2*Pi]*Sqrt[1 - r^2]*s^2*Sqrt[(-1 + r^2*s^2)/((-1 + r^2)*s^2)]* Sqrt[(2*Pi*s^2 - 2*Pi*r^2*s^2)^(-1)])} Further simplification yields E^(((-1 + r^2)*s^2)/(-1 + r*s))/ Sqrt[(-1 + r^2*s^2)/(-1 + r^2)] which does not agree with your given result. A numerical integration with particular values for r,s leads me to believe the Mathematica result is correct. In the lines below, 'ss' is the name I gave to the symbolic result. In[22]:= Exp[(r+1)*s^2] /. {r->.2, s->1.2} Out[22]= 5.62938 In[23]:= ss /. {r->.2, s->1.2} Out[23]= 6.22267 In[24]:= Timing[NIntegrate[igrand /. {r->.2, s->1.2}, {x,-Infinity,Infinity}, {y,-Infinity,Infinity}]] Out[24]= {25.14 Second, 6.22267} Daniel Lichtblau Wolfram Research