Re: Integral?
- To: mathgroup at smc.vnet.net
- Subject: [mg14180] Re: Integral?
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Wed, 30 Sep 1998 19:42:15 -0400
- Organization: University of Western Australia
- References: <6ud2f0$17f@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Torben Mikael Hansen wrote: > How do I make Mathematica perform the double integral > > Integrate[Integrate[Exp[x]*Exp[y]*p[x,y],{x,-Infinity,Infinity}], > {y,-Infinity,Infinity}] > > where > > p[x_,y_]:=1/(2 Pi s^2 Sqrt[1-r^2])*Exp[-(x^2-2 r s x y +y^2)/ > (2 s^2 (1-r^2))] For your p[x,y] (Daniel entered this incorrectly), In[1]:= 2 2 x + y - 2 r s x y Exp[-(-------------------)] 2 1 - r p[x_, y_] := --------------------------- 2 2 2 Pi s Sqrt[1 - r ] we suppress the integrate conditions, In[2]:= SetOptions[Integrate, GenerateConditions -> False]; and compute the integral over x: In[3]:= Integrate[Exp[x] Exp[y] p[x, y], {x, -Infinity, Infinity}] Out[3]= 2 2 2 y (r - 2 s y r - 1) Exp[------ + y - -------------------] 2 2 r - 1 4 (r - 1) ------------------------------------- 2 2 Sqrt[Pi] s To simplify this result we "complete the square" as follows: In[4]:= % /. Exp[a_] :> Exp[Collect[a, y, Simplify]] Out[4]= 2 2 2 (1 - r s ) y 1 2 Exp[-------------- + (r s + 1) y + - (1 - r )] 2 4 r - 1 ---------------------------------------------- 2 2 Sqrt[Pi] s In[5]:= 2 b 2 b 2 % /. (a_) y + (b_) y + (c_) :> a (y + ---) + Simplify[c - a (---) ] 2 a 2 a Out[5]= 2 2 2 (r - 1) (r s + 1) 2 (1 - r s ) (------------------ + y) 2 2 2 2 (1 - r s ) r - 1 Exp[------------------------------------- + ---------] 2 2 r s - 2 r - 1 ------------------------------------------------------ 2 2 Sqrt[Pi] s Since we are integrating with respect to y over -Infinity to Infinity we do a simple change of variables: In[6]:= 2 (r - 1) (r s + 1) % /. y -> y - ------------------ 2 2 2 (1 - r s ) Out[6]= 2 2 2 2 (1 - r s ) y r - 1 Exp[-------------- + ---------] 2 2 r s - 2 r - 1 ------------------------------- 2 2 Sqrt[Pi] s and then do the integration: In[7]:= Integrate[%, {y, -Infinity, Infinity}] Out[7]= 2 r - 1 Exp[---------] 2 r s - 2 -------------------- 2 2 2 r s - 1 2 s Sqrt[---------] 2 r - 1 As a numerical check, In[8]:= % /. {r -> 0.2, s -> 1.2} Out[8]= 0.659048 which agrees with the direct numerical integration: In[9]:= NIntegrate[Evaluate[Exp[x] Exp[y] p[x, y] /. {r -> 0.2, s -> 1.2}], {x, -Infinity, Infinity}, {y, -Infinity, Infinity}, AccuracyGoal -> 4] Out[9]= 0.65907 Cheers, Paul ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul at physics.uwa.edu.au AUSTRALIA http://www.physics.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________