Re: Convolution Integrals
- To: mathgroup at smc.vnet.net
 - Subject: [mg16835] Re: Convolution Integrals
 - From: Paul Abbott <paul at physics.uwa.edu.au>
 - Date: Thu, 1 Apr 1999 21:35:16 -0500
 - Organization: University of Western Australia
 - References: <7dprk0$dqc@smc.vnet.net>
 - Sender: owner-wri-mathgroup at wolfram.com
 
The following code is fine:
 <<Statistics`ContinuousDistributions`
 <<Calculus`FourierTransform`
 dist1=NormalDistribution[10,3];
 pdf1=PDF[dist1,x];
 dist2=NormalDistribution[5,4];
 pdf2=PDF[dist2,x];
 trans1=FourierTransform[pdf1,x,s];
 trans2=FourierTransform[pdf2,x,s];
> I seem to be able to get to the inverse transform alright but how do I
> plot the final distribution?
To get the convolution (your syntax omitted s and x) you need
 conv = InverseFourierTransform[trans1 trans2, s, x]
You can then Plot the pdf and convolution together:
 Plot[{pdf1, pdf2, conv}, {x, -10, 30}, PlotRange -> All, 
   PlotStyle -> Table[Hue[i], {i, 0, 1, 1/3}]]; 
Cheers,
	Paul
____________________________________________________________________ 
Paul Abbott                                   Phone: +61-8-9380-2734
Department of Physics                           Fax: +61-8-9380-1014
The University of Western Australia           
Nedlands WA  6907                     mailto:paul at physics.uwa.edu.au 
AUSTRALIA                        http://www.physics.uwa.edu.au/~paul
            God IS a weakly left-handed dice player
____________________________________________________________________