Re: Convolution Integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg16835] Re: Convolution Integrals
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Thu, 1 Apr 1999 21:35:16 -0500
- Organization: University of Western Australia
- References: <7dprk0$dqc@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
The following code is fine: <<Statistics`ContinuousDistributions` <<Calculus`FourierTransform` dist1=NormalDistribution[10,3]; pdf1=PDF[dist1,x]; dist2=NormalDistribution[5,4]; pdf2=PDF[dist2,x]; trans1=FourierTransform[pdf1,x,s]; trans2=FourierTransform[pdf2,x,s]; > I seem to be able to get to the inverse transform alright but how do I > plot the final distribution? To get the convolution (your syntax omitted s and x) you need conv = InverseFourierTransform[trans1 trans2, s, x] You can then Plot the pdf and convolution together: Plot[{pdf1, pdf2, conv}, {x, -10, 30}, PlotRange -> All, PlotStyle -> Table[Hue[i], {i, 0, 1, 1/3}]]; Cheers, Paul ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul at physics.uwa.edu.au AUSTRALIA http://www.physics.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________